

FALL 2023 SEMI-ANNUAL MONITORING REPORT

WASTE MANAGEMENT OF CANADA RICHMOND LANDFILL TOWN OF GREATER NAPANEE, ONTARIO

Prepared for:

WASTE MANAGEMENT OF CANADA 1271 Beechwood Road

Napanee, ON K7R 3L1

Prepared by:

BluMetric Environmental Inc.

The Tower, The Woolen Mill 4 Cataraqui Street Kingston, ON K7K 1Z7

Project Number: 230130-03

January 3, 2024

FALL 2023 SEMI-ANNUAL MONITORING REPORT

WASTE MANAGEMENT OF CANADA RICHMOND LANDFILL TOWN OF GREATER NAPANEE, ONTARIO

Prepared for:

Waste Management of Canada 1271 Beechwood Road

Napanee, ON K7R 3L1

Prepared by:

BluMetric Environmental Inc.

The Tower, The Woolen Mill 4 Cataraqui Street Kingston, ON K7K 1Z7

Project Number: 230130-03

January 3, 2024

Ref: Richmond LF 2023 Fall S-A Rpt_FINAL_Jan02.docx

TABLE OF CONTENTS

1.		INTR	ODUCTION	1
2.		MET	HODOLOGY	1
	2.1	Proc	gram Summary	1
	2.2	WATI	er Sample Collection and Laboratory Analysis	2
	2.3	Grou	JNDWATER ELEVATIONS	3
3.		RESU	ILTS AND DISCUSSION	3
	3.1	LEACH	HATE RESULTS	4
	3.	1.1	Liquid Levels in Leachate Wells	4
	3.	1.2	Leachate Generation	5
	3.2	Grou	undwater Results	5
	3.	2.1	Groundwater Elevations	5
	3.	2.2	Groundwater Analytical Results	6
	3.	2.3	Guideline B-7 Reasonable Use Limits (RULs)	9
	3.	2.4	Status of Monitoring Wells and Compliance with Ontario Regulation 903	9
	3.	2.5	Groundwater Chemistry Quality Assurance / Quality Control (QA/QC)	10
	3.3	SURFA	ACE WATER RESULTS	10
	3.	3.1	Pond Elevations	10
	3.	3.2	Surface Water Monitoring Locations	10
	3.	3.3	Surface Water Flow	11
	3.	3.4	Surface Water Analytical Results	11
	3.	3.5	Historical Surface Water Analytical Results	
	3.	3.6	Surface Water Quality Assurance / Quality Control (QA/QC)	12
	3.4	SUBSU	JRFACE GAS SAMPLING	12
	3.5	Annı	Jal Summary	12
	3.6	Addi	tional Investigations	14
4.		SUM	MARY, CONCLUSIONS AND RECOMMENDATIONS	14
	4.1	Grou	undwater	15
	4.2	SURF	ACE WATER	16
	4.3	SUBSU	JRFACE GAS	16
5.		LIMI	TING CONDITIONS	16

LIST OF TABLES

Table 1: Summary of Environmental Monitoring Program Table 2: Analytical Parameters for Water and Leachate Samples Table 3: Groundwater Elevation Monitoring Locations Table 4a: Groundwater Elevations – July 20, 20223 Table 4b: Groundwater Elevations - October 23, 2023 Table 5a: Groundwater Quality Results – October 24 – 27, 2023 Table 5b: Groundwater Quality Results and Reasonable Use Limits – October 24 – 27, 2023 Surface Water Characteristics - October 24, 2023 Table 6: Table 7a: Surface Water Quality Results - July 27, 2023 Table 7b: Surface Water Quality Results - October 24, 2023 Table 8: Subsurface Gas Monitoring Results – November 3, 2023 Table 9: Additional Investigations

LIST OF FIGURES

Figure 1: Site Plan and Monitoring Locations Figure 2a: Shallow Groundwater Flow Zone Potentiometric Surface – July 20, 2023 Figure 2b: Shallow Groundwater Flow Zone Potentiometric Surface – October 23, 2023 Figure 3a: Intermediate Bedrock Groundwater Flow Zone Potentiometric Surface – July 20, 2023 Figure 3b: Intermediate Bedrock Groundwater Flow Zone Potentiometric Surface – October 23, 2023 Shallow Flow Zone Concentrations Figure 4: Figure 5: Intermediate Bedrock Flow Zone Concentrations

LIST OF APPENDICES

Appendix A: Monitoring Well Inventory

Appendix B: Results from Analytical Quality Assurance / Quality Control (QA/QC) Program

Appendix C: Time-Concentration Plots from Groundwater Trigger Wells

Appendix D: Time-Concentration Plots for 1,4-Dioxane at Selected Wells

Appendix E: Time-Concentration Plots from Surface Water Sampling Locations

Page ii BluMetric

1. INTRODUCTION

The purpose of this report is to present results and to provide an interpretation of the data that were collected during the summer and fall 2023 monitoring events at the Waste Management of Canada Corporation (WM) Richmond Landfill.

The WM Richmond Landfill is approved as a 16.2-hectare waste disposal (landfilling) facility within a total site area of 138 hectares, located on parts of Lots 1, 2 and 3, Concession IV of the former Township of Richmond, now in the Town of Greater Napanee, Ontario. The landfill has been closed to waste disposal since June 20, 2011.

2. METHODOLOGY

2.1 PROGRAM SUMMARY

The summer and fall 2023 monitoring events were conducted in accordance with the requirements outlined in the revised interim Environmental Monitoring Plan (EMP; Revision No. 05) dated April 15, 2016, as specified in the Amended Environmental Compliance Approval (ECA) number A371203, issued on March 19, 2021.

The site layout and monitoring locations are shown on Figure 1. The monitoring programs for groundwater, surface water, leachate and landfill gas are summarized in Table 1.

The summer monitoring event was conducted on July 20 and July 27, 2023. The activities completed include the following:

- Surface water samples were collected on July 27, 2023, with the exception of sites \$2, \$4R, \$6, \$8R and \$20 because they were dry;
- Groundwater monitoring wells installed in the shallow and intermediate bedrock flow zones (see Table 3) were monitored for water levels on July 20, 2023. No water level was measured at groundwater monitors M18, M23, M53-4, M58-4, M68-4, M70-3 and M105 because they were dry, nor from M19 because it is damaged;
- Water levels were recorded at the staff gauges installed at the three ponds located on site between the landfill and Beechwood Road on July 20, 2023; and
- Liquid levels were measured in landfill leachate wells on July 20, 2023.

The fall monitoring event was conducted between October 23 and October 27, 2023. The activities completed include the following:

Page 1 BluMetric

- Groundwater monitoring wells installed in the shallow and intermediate bedrock flow zones (see Table 3) were monitored for water levels on October 23, 2023. No water levels were measured at groundwater monitors M15, M18, M35, M58-4, M68-4, M70-3, and M174 because they were dry, nor from M19 because it is damaged;
- Water levels were recorded at the staff gauges installed at the three ponds located on site between the landfill and Beechwood Road on October 23, 2023;
- Liquid levels were measured in landfill leachate wells on October 23, 2023;
- Groundwater monitoring wells were sampled between October 24 and 27, 2023. No samples were collected from monitoring well M53-4 because it was dry, nor from monitoring wells M16-3, M66-2 and M85 because they had not recover sufficiently for sampling after purging. Samples collected were analyzed for the suite of groundwater inorganic and general parameters and Volatile Organic Compounds (VOCs) listed in Table 2;
- Surface water monitoring was conducted on October 24, 2023. All locations (\$2, \$3, \$4\$, \$5 \$7, \$8R, \$18, \$19, and \$20) were dry, therefore no samples were able to be collected. When surface water samples are collected, they are analyzed for surface water inorganic and general parameters and for 1,4-dioxane, as listed in Table 2;
- Landfill gas monitoring was conducted on November 3, 2023. Field measurements were made with a RKI Eagle probe calibrated to methane gas response at seven gas monitors (GM1, GM2, GM3, GM4-1, GM4-2, GM5 and GM6); and,
- A total of three Quality Assurance/Quality Control (QA/QC) field duplicate samples were collected during the fall sampling event.

2.2 WATER SAMPLE COLLECTION AND LABORATORY ANALYSIS

Groundwater and surface water samples were collected in accordance with accepted industry protocols. Groundwater samples were collected using dedicated Waterra inertial lift pumps connected to dedicated polyethylene tubing. Three casing volumes of water were purged from each monitoring well prior to the collection of groundwater samples. During purging, readings for pH, temperature, conductivity, and oxidation-reduction potential were recorded on a regular basis. The stabilization of the parameters was used to assess when well purging was complete. Low producing wells were purged dry and allowed to recover prior to sampling. If the monitoring well had not recovered sufficiently for sampling within 24 hours, the monitor was considered dry, and a sample was not collected.

Surface water samples were collected using a clean bottle where water depth was sufficient; at sampling locations where water depth was an issue, a 50-cc syringe was used to carefully collect the surface water as not to disturb the bottom sediments. Surface water sampling locations were sampled from downstream to upstream to prevent any re-suspension of sediment impacting the

Page 2 BluMetric

downstream sampling locations. The pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential of the surface water were obtained in the field at all surface water sampling points while minimizing disturbance of the bottom sediment.

All water samples were placed in bottles supplied and prepared by the laboratory. The samples were packed in coolers with ice and shipped by courier to the laboratory. All samples were analysed by Bureau Veritas Laboratory of Mississauga, ON, which is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). Table 2 presents a summary of groundwater and surface water analytical parameters.

2.3 GROUNDWATER ELEVATIONS

Water levels were recorded to the nearest 0.005 m using an electronic water level meter for the groundwater monitoring wells listed in Table 3, grouped in relation to their location relative to the landfill footprint and groundwater flow zone monitored.

3. RESULTS AND DISCUSSION

Background information concerning the site geology and hydrogeology was described in detail in the Site Conceptual Model (SCM) report (1) and updated based on results from subsequent hydrogeological investigations (2,3,4,5,6,7), and is summarized here. The SCM report describes the groundwater flow conditions at the Richmond Landfill.

Based on the results from extensive studies conducted previously at the site, the hydrogeological framework for the facility has been defined as follows:

⁷ Addendum to Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., May 2019

Page 3 BluMetric

¹ Site Conceptual Model Report, WM Richmond Landfill, prepared by Dr. B.H. Kueper and WESA Inc., October 2009

² Supporting Document, Application to Amend Environmental Compliance Approval No. A371203, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., March 2015

³ Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., January 2016

⁴ Addendum to Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., April 2016

⁵ Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., July 2017

⁶ Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., October 2018

- The active groundwater flow zone at the site extends to a depth of approximately 30 m below the top of bedrock;
- The shallow groundwater flow zone is conceptualized as the overburden, the overburdenbedrock contact and the upper one to two metres of bedrock;
- The direction of groundwater flow in the shallow flow zone is strongly influenced by topography;
- The intermediate bedrock flow zone extends from one to two m below top of bedrock to a depth of approximately 30 m below top of bedrock;
- Groundwater flows through a network of fractures in the upper 30 m of bedrock;
- the dominant fracture orientation is horizontal to sub-horizontal; however, vertical to sub-vertical fractures are present providing hydraulic connection between horizontal fractures;
- Hydraulic connections of fractures exist in the intermediate bedrock flow zone to the west, south and east of the site (horizontal and vertical connections);
- Intermediate bedrock flownets show that groundwater flow directions are variable with season and generally flows to the west from the western edge of the landfill, to the southeast from the southern edge of the landfill, to the south along the eastern edge of the landfill, and north to northwest from the northern limit of the landfill;
- The hydraulic conductivity of the intermediate bedrock is lower to the north and east of the landfill compared to other areas of the site, implying that the rate of groundwater flow is lower than in areas immediately south, southeast and west of the landfill;
- South of the landfill, the intermediate bedrock flow zone has distinct areas of interacting hydrogeological zones which are not isolated from one another, but are distinct based on hydraulic conductivity, water level variations and the rate of response to recharge events; and,
- Groundwater monitoring wells in the southern portion of the proposed CAZ have static groundwater elevations that are much deeper than wells further north in the CAZ; these deep groundwater elevations appear to be controlled by karst systems confirmed to exist in the southern portion of the proposed CAZ, as discussed in the latest updates to the SCM^(6,7).

3.1 LEACHATE RESULTS

3.1.1 Liquid Levels in Leachate Wells

Liquid levels were measured in the two landfill leachate wells on July 20 and October 23, 2023:

- The liquid level at LW-P1 was 147.10 and 144.58 metres above sea level (masl), respectively; and
- The liquid level at LW-P2 was 145.74 and 147.58 masl, respectively.

Page 4 BluMetric

3.1.2 Leachate Generation

An estimate of the amount of leachate generated at the site is provided by the site records of the volume of leachate hauled to the Town of Greater Napanee Waste Water Treatment Plant (WWTP) or Cobourg's WWTP. The use of the North Lagoon, where leachate can be stored temporarily on an as needed basis when volumes exceed the WWTP's ability to accept leachate, has been discontinued. Starting in 2023, the remaining liquid in the North Lagoon is being pumped out with the aim of draining the lagoon. Over the 2023 summer season, the North Lagoon has been decreased to 8 percent capacity (2185 m³ of the total capacity 25,600 m³).

The volume of leachate collected from the landfill and hauled to the Napanee and Cobourg WWTPs from January to December 2023 was approximately 27,332 m³. A volume of approximately 9,437 m³ was pumped from the Lagoon to the North Chamber. Consequently, the total leachate volume generated by the landfill from January to December 2023 is estimated at 17,895 m³.

3.2 GROUNDWATER RESULTS

3.2.1 Groundwater Elevations

Groundwater elevations were measured on July 20 and October 23, 2023, from the monitoring wells listed in Table 3, and are presented in Tables 4a and 4b, respectively. An inventory of all monitoring well locations is provided in Appendix A. Groundwater elevation contours within the shallow groundwater flow zone are shown on Figure 2a (summer) and Figure 2b (fall), while Figure 3a (summer) and Figure 3b (fall) show groundwater elevation contours for the intermediate bedrock flow zone. Groundwater flow directions were inferred by interpolating the water elevations from wells screened within the corresponding groundwater flow zone and are consistent with historical results.

The summer and fall 2023 shallow groundwater contours (Figures 2a and 2b, respectively) show that the Empey Hill drumlin southwest from the landfill creates a flow divide, with shallow groundwater being directed both to the north and the south towards areas of lower hydraulic heads. The water levels from shallow monitors M15, M18, M19, M23, M35, M53-4, M58-4, M68-4, M70-3, M85 and M86 were not used to prepare the summer and/or fall 2023 groundwater contours because they were dry, did not recover sufficiently after purging or were damaged (M19). North of the landfill, shallow groundwater converges towards Marysville Creek in the area immediately east of County Road 10 (Deseronto Road), while shallow groundwater flow in the southern portion of the site converges along Beechwood Ditch and the southern pond system.

Page 5 BluMetric

Shallow groundwater east of the landfill is influenced by a local zone of higher water levels in the vicinity of monitoring well M96; shallow groundwater north of M96 flows to the north-northwest and ultimately Marysville Creek, while groundwater south of M96 flows to the south-southwest, towards Beechwood Ditch and the ponds.

The summer and fall 2023 intermediate bedrock zone contours are presented on Figures 3a and 3b, respectively. On the landfill property, groundwater in this hydrostratigraphic unit generally flows to the north, west, and south-southeast relative to the landfill. Monitoring wells M178R-1 (low permeability deeper screen) and M178R-4 (shallower screen with lower hydraulic head believed to be reflective of the shallow flow zone in this area) were not used to generate the interpolated groundwater contours for the Intermediate Bedrock flow zone. Groundwater elevation from M80-1 was excluded from the summer interpolation as it was believed to be an outlier; similarly, M191 was excluded from the contouring (low permeability monitoring well). Lastly, intermediate bedrock zone monitoring wells located farther to the south and southwest (e.g., M173, M174 (dry during the summer event), M181-1, M181-2, M182, M187 and M189) were not considered in the groundwater contour interpolation because they exhibit much lower hydraulic heads and appear to be part of a separate group of hydraulically responsive wells within the intermediate bedrock flow zone. The latter subset of wells appears to be influenced by karst systems that were identified in the southern part of the proposed CAZ. Additional details from the karst assessment in the area south and southeast of the Site have been provided under separate cover (6,7).

3.2.2 Groundwater Analytical Results

Groundwater monitoring results from the wells sampled in fall 2023 are presented in Table 5a and are consistent with historical results. Alkalinity, ammonia and 1,4-dioxane results are shown for the Shallow and Intermediate Bedrock Flow Zones on Figures 4 and 5, respectively.

3.2.2.1 Shallow Groundwater Flow Zone

Analytical results from shallow groundwater monitors sampled in fall 2023 were generally consistent with historical results.

As shown in Table 5a, slightly decreased concentrations of a number of water quality parameters (e.g., alkalinity, boron, chloride, conductivity, DOC, magnesium, sodium and/or TDS) were observed in some shallow groundwater zone monitoring wells located in close proximity to the landfill footprint, north and northwest from the unlined portion of the landfill (e.g., M66-2, M86, M101, M103 and M104). 1,4-dioxane was detected at monitoring wells M101, M103 and M104.

Page 6 BluMetric

The approximate extents of leachate impacted shallow groundwater, consistent with those delineated from recent hydrogeological investigations (6,7), are shown on Figure 4.

Monitor M54-4, located approximately 200 m south of the landfill footprint, also exhibited slightly elevated alkalinity, conductivity, and TDS, as well as low but detectable concentrations of chlorinated VOCs (e.g., 1,1,1-trichloroethane, 1,1-dichloroethane, cis-1,2-dichloroethylene, tetrachloroethylene and trichloroethylene). An assessment of the impacts at shallow monitoring well M54-4, attributed to surface contamination from historical local sources rather than from landfill leachate, was submitted under separate cover (8).

There is no evidence of groundwater impacts away from the landfill footprint in the shallow groundwater flow zone. Isolated occurrences of elevated concentrations of water quality parameters (i.e., one or two parameters per sample) are seen on the Site.

3.2.2.2 Intermediate Groundwater Flow Zone

Analytical results from intermediate bedrock groundwater monitors sampled in fall 2023 were generally consistent with historical results.

North of the landfill, elevated concentrations of water quality parameters and detectable 1,4-dioxane concentrations were observed at monitors M6-3 and OW4, which are located in close proximity to the landfill footprint. These results indicate the presence of leachate impacts at these locations. Despite the relatively higher concentrations of some parameters (e.g., alkalinity at OW1), the absence of 1,4-dioxane indicates no impacts from the landfill are apparent further north from the landfill footprint and near Marysville Creek (e.g., at OW1, M5-3, M75, M82-1 and M82-2).

South of the landfill, the presence of 1,4-dioxane and elevated concentrations of alkalinity (typically greater than 400 mg/L where 1,4-dioxane is present), DOC, chloride and TDS indicate groundwater impacts from the landfill at several monitoring well locations (e.g., M9-2, M9-3, M64-2, M70-2, M108, M109-1, M110-1, M114-1, M121, M123, M167, M168, M170, M172, M178R-2, M178R-3, M178R-4 and M192). Several locations south and southeast of the landfill with elevated concentrations of chloride, sodium, TDS, and/or BTEX compounds (e.g., M6-3, M106, M121, M186), are indicative of naturally poor quality connate (and often saline) groundwater. These pockets of naturally poor-quality groundwater are isolated and do not reflect any widespread or significant upwelling of saline groundwater.

⁸ Assessment of Chlorinated VOC Impacts at Shallow Groundwater Monitoring Well M54-4, Waste Management Richmond Landfill, Town of Greater Napanee, BluMetric Environmental Inc., July 2017

Page 7 BluMetric

Several monitoring wells downgradient of these impacted wells (e.g., M177, M179, M185-1, M185-2, M187, M188-1 and M190) do not show impacts associated with landfill leachate (i.e., no 1,4-dioxane detected and alkalinity concentrations of 350 mg/L or lower) thus defining the limit of the groundwater plume. The approximate extents of leachate impacted groundwater in the intermediate bedrock flow zone, consistent with those delineated from recent hydrogeological investigations (6.7), are shown on Figure 5.

Wells sampled in the western part of the landfill site (e.g., M72, M74 and M82-1) exhibit concentrations of water quality parameters that are relatively low and continue to reflect background conditions.

3.1.2.3 Trend Analysis of 1,4-Dioxane Concentrations

Time-concentration plots showing 1,4-dioxane results since 2013 are provided in Appendix D for wells located near the distal extent of the delineated leachate impacted groundwater areas, depicted on Figures 4 and 5 for the Shallow and Intermediate Bedrock flow zones, respectively. Consistent with results from previous monitoring events, review of apparent temporal trends in Appendix D shows that:

- A) Concentrations are significantly higher at monitoring wells M6-3, OW4 and M104, located adjacent to the north portion of the landfill, compared to all other monitoring locations. Details for the areas to the north (blue series), southeast (green series) and south (red series) of the landfill are shown on Plots B, C and D, respectively;
- B) To the north of the landfill, stable or declining (notably since 2018) trends are observed in the shallow groundwater flow zone (M101, M103 and M104) and intermediate bedrock flow zone (M6-3 and OW4);
- C) To the southeast of the landfill, an increasing trend in concentrations is observed at M192. Previously increasing trends at monitoring wells located farther downgradient have stabilized (M170 and M168) or decreased (M167) since approximately fall 2019; and,
- D) To the south of the landfill, stable or declining trends have continued in 2023 in the intermediate bedrock flow zone (M114-1, M121, M178R-2, M178R-3, M178R-4 and M64-2.

The stable and declining trends observed in 1,4-dioxane concentrations north and south of the landfill in both shallow and intermediate bedrock zones confirm that the plume is stable and naturally attenuating in these areas. With respect to the southeast portion of the property, WM has recently submitted an application to seek approval for an engineered solution located immediately upgradient from the eastern landfill property limit. The proposed hydraulic control system (HCS) has been designed to intercept impacted groundwater and prevent further off-site

Page 8 BluMetric

migration of impacted groundwater onto the adjacent property located east of the landfill property and north of Beechwood Road.

3.2.3 Guideline B-7 Reasonable Use Limits (RULs)

Constituent concentrations from selected monitoring wells located within the low-head areas of the WM Richmond Landfill in both the Shallow and Intermediate Bedrock Groundwater Flow Zones are compared to the RULs derived from laboratory analytical results (Table 5b). The RULs reported in Table 5b for leachate indicator parameters and trigger wells were presented in the interim EMP (Revision No. 05) dated April 2016, including 1,4-dioxane for which the site-specific RUL of 0.001 mg/L was set as required by the ERT Order dated December 24, 2015.

All results for 1,4-dioxane at trigger wells in the shallow and intermediate bedrock flow zones were below the RUL of 0.001 mg/L, except for M192 with detectable concentrations that are consistent with historical data. Sample dilution was necessary for some samples (e.g., M106, OW37-s) resulting in a reportable detection limit (RDL) of 0.003 mg/L.

In the shallow groundwater zone, slightly elevated concentrations of a variable number of inorganic or general water quality parameters above their respective RUL (e.g., alkalinity, DOC, iron, manganese, sodium, and/or TDS) were observed in monitoring wells M54-4, M66-2, M67-2, M80-2, M86, M 80-2, M87-2 and OW37-s.

Slightly elevated concentrations of a variable number of water quality parameters above their respective RUL (e.g., alkalinity, chloride, DOC, iron, manganese, sodium and/or TDS) were also observed in some intermediate groundwater flow zone monitoring wells (e.g., M82-1, M82-2, M106, M179, M185-1, M186, M187, M190 and M192).

The RUL exceedances observed in fall 2023 are consistent with historical results.

3.2.4 Status of Monitoring Wells and Compliance with Ontario Regulation 903

During the fall 2023 monitoring event, the condition of groundwater monitoring wells included in the EMP was inspected. Any repairs, such as new locks, labels or well caps, were made as necessary. Watertight casings and seals remain in place at all monitors to ensure that surface water or foreign materials cannot enter groundwater monitoring wells. All groundwater monitoring wells are fitted with a vermin proof cap to meet the requirements of Ontario Regulation 903 and are locked to provide protection against vandalism as per Waste Management standard operating procedure and in line with industry best practices.

Page 9 BluMetric

Shallow groundwater monitoring wells M19 and M58-4 are damaged, and it is recommended that they be decommissioned or replaced when a revised EMP is approved as they cannot be repaired.

3.2.5 Groundwater Chemistry Quality Assurance / Quality Control (QA/QC)

An evaluation of QA/QC data is included in Appendix B. A standard margin of error of 20% relative percent difference (RPD) between regular and duplicate samples was deemed acceptable for field duplicates.

In general, the comparison between samples and duplicates shows very good correlation for the majority of analyzed constituents. All parameters for groundwater duplicate QA/QC sampling were within the 20% margin of error except for dissolved organic carbon at M108 and M123 where the RPD was slightly higher (42% and 27%, respectively).

3.3 SURFACE WATER RESULTS

3.3.1 Pond Elevations

Staff gauges are installed in the three ponds on the south side of the landfill labeled SG1, SG2 and SG3 (Figure 1). Surface water levels were monitored at the staff gauges on July 27 and October 24, 2023. Note that S2, S4R, S5, S6, S8R and S20 were dry during the summer sampling round and that all sites were dry during the fall sampling round. Staff gauge locations are shown on Figures 2a and 2b.

3.3.2 Surface Water Monitoring Locations

The two water courses that may receive surface water/storm water runoff from the Richmond Landfill site are Marysville Creek to the north of the waste mound and Beechwood Ditch to the south (Figure 1). Beechwood Ditch is a man-made surface water course that flows from the east onto WM property. It then flows west across a portion of the site before again crossing Beechwood Road and travelling southwest where it crosses County Road 10 and joins Marysville Creek east of Highway 49 and north of Highway 401. Both Beechwood Ditch and Marysville Creek flow intermittently in the vicinity of the landfill. Marysville Creek has some base flow locally and flows on a continuous basis west of County Road 10 (Deseronto Road). Marysville Creek eventually discharges into the Bay of Quinte at Hungry Bay.

An ephemeral unnamed local surface water course is present in the central portion of the proposed CAZ, originating from a small man-made pond located directly east of Quarry Road. Surface water flows west from this pond over approximately 600 m along a topographically low area, to a

Page 10 BluMetric

second pond located near monitoring well M187 and finally to a local topographic depression located approximately 75 m farther west, where water, when flowing, enters into the ground into a near-surface karst feature.

Surface water monitoring locations are shown on Figure 1. Surface water samples were only collected at site \$3, \$7, \$18 and \$19 during the summer sampling round (July 27, 2023) as the rest of the sites were dry. Similarly, no samples were collected during the fall sampling event (October 24, 2023) because all the sites were dry.

3.3.3 Surface Water Flow

Surface water flow measurements were not recorded for the fall sampling event (October 24, 2023) as all the sites were dry. Visual observations of surface water flow and general water characteristics for the fall sampling event are summarized in Table 6.

3.3.4 Surface Water Analytical Results

The analytical results from surface water locations sampled during the summer and fall 2023 sampling events are presented in Tables 7a and 7b respectively.

Surface water quality results were compared to Provincial Water Quality Objectives (PWQO). Background surface water quality was monitored on site at upstream station \$2 for Marysville Creek. Background surface water quality was monitored at upstream station \$18 for the unnamed local water course located in the central portion of the CAZ. Storm water runoff from the existing landfill area flows to one of three storm water sedimentation retention ponds, located to the northeast, northwest and south of the landfill footprint. Sampling location \$3 is located near the downstream property boundary along Marysville Creek.

Parameters analysed in surface water samples collected during the summer 2023 sampling event were all below PWQO, except for phenols, total phosphorus, and iron at all four sampling locations – \$3, \$7, \$18, and \$19.

Surface water results from 2023 are consistent with historical results and indicate that the landfill is not causing adverse impacts to surface water quality.

3.3.5 Historical Surface Water Analytical Results

Historical surface water analytical results are plotted in Appendix E and compared with PWQO. Throughout the history of surface water sampling, various parameters have exceeded their

Page 11 BluMetric

respective PWQO concentrations on occasion (e.g., ammonia (unionized), chromium (III), chromium (VI), cobalt, copper, iron, phenols, phosphorus (total), and zinc). Concentrations of these parameters fluctuate readily with no notable trends.

Iron and total phosphorus concentrations in surface water have frequently exceeded their PWQO of 0.3 and 0.03 mg/L, respectively, including at upstream locations \$2 (Marysville Creek), \$5 (Beechwood Ditch) and \$18 (unnamed water course in central CAZ), indicating upstream sources unrelated to the landfill.

3.3.6 Surface Water Quality Assurance / Quality Control (QA/QC)

An evaluation of QA/QC data is included in Appendix B. A standard margin of error of 20% was deemed acceptable for field duplicates. In general, the comparison between regular samples and duplicates shows very good correlation for the majority of analyzed constituents. All parameters for the summer sampling round field duplicate sample (location \$18) were within the 20% margin of error, except chemical oxygen demand and total phosphorus.

3.4 SUBSURFACE GAS SAMPLING

On November 3, 2023, BluMetric inspected the subsurface gas monitoring probes and measured methane concentrations at all locations. The locations of the gas monitors are shown on Figure 1 and results are provided in Table 8. Methane concentrations in gas monitoring wells were between 0 and 45 ppm, well below the LEL for methane of 5% by volume in air (or 50,000 ppm).

3.5 ANNUAL SUMMARY

A comparative review of groundwater quality results between this and previous sampling events indicates that constituent concentrations vary over time but for the most part have remained relatively consistent over the current calendar year and over the past five years or more. Depending on which monitoring point and more importantly the time scale considered, conflicting trends in concentrations can occur sporadically. However, since implementing the revised EMP dated June 29, 2010, most of the patterns have been observed to be seasonally variable but relatively similar.

Where sufficient historical data are available, alkalinity, chloride, dissolved organic carbon (DOC), iron, manganese, sodium and total dissolved solids (TDS) concentration data were reviewed for all groundwater trigger wells listed in Table 12 of the EMP. Time-concentration plots are provided in Appendix C. Over the past twelve years (from the spring of 2012 to the fall of 2023), the vast

Page 12 BluMetric

majority of the analytical results show stabilized and/or variable/oscillating concentrations for almost all parameters. Exceptions to this generalization include:

- For the shallow groundwater monitors:
 - o M54-4 for alkalinity, DOC and manganese (increasing trend until fall 2015, then relatively stable trend), and chloride (increased to peak concentration of 130 mg/L in fall 2009 then decreasing trend until 2021 and a current increasing trend);
 - o M66-2 for manganese and TDS (decreasing trend);
 - o M67-2 for manganese, sodium and TDS (decreasing trend);
 - M80-2 for alkalinity (increasing trend until spring 2018, then stable trend), sodium (increasing trend), chloride (increased to peak of concentration of 85 mg/L in fall 2015 then decreasing trend since that time) and manganese (decreasing trend);
 - M86 for alkalinity (increasing trend), DOC (decreasing trend until 2021 then increasing trend since that time) and chloride, iron, manganese, and TDS (decreasing trend); and,
 - o OW37-s for alkalinity, DOC, and iron (increasing trend) and chloride (decreasing trend until 2021 then increasing trend since that time).
- For the intermediate bedrock groundwater monitors:
 - o M56-2 for alkalinity (increasing trend), chloride, TDS (decreasing trend);
 - M82-1 for DOC, TDS (decreasing trend);
 - M82-2 for TDS (decreasing trend);
 - o M91-1 for chloride, TDS (decreasing trend);
 - o M106 for chloride, sodium and TDS (increasing trend);
 - o M179 for alkalinity, iron and manganese (decreasing trend);
 - M188-1 for sodium (decreasing);
 - M185-1 for alkalinity and DOC (decreasing) and chloride (increasing trend until 2021 then decreasing trend since that time);
 - M186 for alkalinity (increasing to peak concentration of 30 mg/L in fall of 2017, then decreasing trend) and DOC, iron, manganese and TDS (decreasing trend);
 - M188-1 for alkalinity (decreasing trend until 2020 then stable trend since that time);
 and,
 - o M192 for alkalinity and DOC (increasing) and chloride (decreasing).

The observed trends in groundwater geochemistry outlined here are most likely due to natural groundwater quality variability and are not necessarily indicative of landfill leachate impacts, so they should be interpreted with caution.

Page 13 BluMetric

3.6 ADDITIONAL INVESTIGATIONS

Work outside of the scope of the EMP program was performed throughout the year at the Richmond Landfill Site. Table 9 summarizes the activities and reporting completed in 2023, as well as anticipated work planned for 2024.

Non-routine investigations and activities included:

- Investigation and soil cleanup of a small area resulting from a leaking tank used to temporarily store leachate in spring 2023;
- The North Lagoon was pumped between June and October 2023 in an effort to empty it; it is planned to pump out the remaining liquid when weather permits in 2024. An updated water balance was completed of the North Lagoon using recent data. Repairs were also made to patch rodent bite marks observed in some parts of the exposed plastic liner near the top of the perimeter berm and earthworks were completed to restore the protective layer of compacted clay over the liner;
- Updated post-closure environmental monitoring plan (EMP) and southeast hydraulic control system (HCS) design brief, originally prepared to support proposed amendments to site ECAs nos. A371203 (Waste ECA) and 1688-8HZNJG (Industrial Sewage Works ECA), were submitted to MECP in May 2023 to address review comments.

Other activities conducted in 2023 were related to requirements from ECA no. 1688-8HZNJG associated with the monitoring of on-site Ponds and Leachate, as well as those from agreement with the Town of Napanee Waste Water Treatment Plant (WWTP) where landfill leachate is hauled and treated.

4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The summer and fall 2023 monitoring programs included the collection of groundwater and surface water samples, as well as landfill gas monitoring, in accordance with the site monitoring requirements outlined in the revised interim EMP (Revision No. 05) dated April 15, 2016, as specified in the Amended Environmental Compliance Approval (ECA) number A371203, issued by MECP on March 19, 2021.

The following were completed as part of the summer and fall 2023 EMP monitoring events, between July 20 and July 27, 2023, and October 23 and October 27, 2023, respectively:

Page 14 BluMetric

- Surface water locations were sampled for analytical testing;
- Water levels were recorded from groundwater monitoring wells installed in the Shallow groundwater and Intermediate Bedrock Flow Zones, as well as leachate monitoring wells;
- Groundwater monitors completed in the Shallow and Intermediate Bedrock Flow Zones were sampled for analytical testing;
- Landfill gas monitoring wells were monitored for methane concentrations; and,
- Quality Assurance/Quality Control (QA/QC) samples were collected, including field duplicate samples and field blank samples.

4.1 GROUNDWATER

- Groundwater flow directions interpreted from water elevations measured in monitors were consistent with historical flownets:
 - Shallow groundwater flow on site is influenced by local topographic highs in the southwestern (Empey Hill Drumlin) and eastern (groundwater monitor M96 area) portions of the site and is characterized by a flow divide with shallow groundwater being directed both to the north (toward Marysville Creek) and the south (toward Beechwood Ditch). South of Beechwood Road shallow groundwater flow converges from local topographic highs to the north and south, and discharges to a local surface water course within a topographically low area running east-west in the central portion of the proposed CAZ;
 - Groundwater in the intermediate bedrock flow zone generally flows to the north, west,
 and south-southeast relative to the landfill;
- Groundwater quality data from fall 2023 were generally consistent with historical results;
- Slightly elevated groundwater concentrations of a number of water quality parameters are seen in the Shallow Flow Zone within the property in the immediate vicinity of the landfill footprint to the south, north and northwest of the landfill footprint;
- The geochemical results for the Intermediate Bedrock Flow Zone indicate higher concentrations of water quality parameters associated with landfill leachate impacts to the south-southeast and immediately north of the landfill relative to concentrations west and east of the landfill;
- Time-concentration plots of 1,4-dioxane results indicate that to the north of the landfill, stable or declining trends are observed in the shallow and intermediate bedrock flow zones; to the south of the landfill, generally stable or declining trends are observed in the intermediate bedrock flow zone; and, to the southeast of the landfill, an increasing trend is observed at M192 while previously increasing trends at M170, and to a lesser degree at M167 and M168 located farther downgradient, have begun to decrease or stabilize since fall 2019;

Page 15 BluMetric

- Continued groundwater monitoring within the Shallow and Intermediate Bedrock groundwater flow zones between the landfill footprint and the low-head areas is warranted in order to further examine groundwater quality and any trends over time; and,
- Shallow groundwater monitoring wells M19 and M58-4 are damaged and should be repaired or decommissioned upon MECP approval of the updated post-closure EMP.

4.2 SURFACE WATER

- The concentrations observed during the 2023 monitoring events are within the range of historical monitoring results and indicate that the landfill is not causing adverse impacts to surface water quality;
- The following PWQO exceedances were noted during the summer sampling event: phenols, total phosphorus, and iron at all four sampling locations \$3, \$7, \$18, and \$19.;
- No surface water samples were collected during the fall sampling event as all the locations were dry;
- All other measured parameters were below PWQO.

4.3 SUBSURFACE GAS

Measurements for methane gas were between 0 and 45 ppm for the six monitoring locations, well below the LEL for methane of 5% by volume in air (or 50,000 ppm).

5. LIMITING CONDITIONS

The summer and fall 2023 monitoring program involved the collection of groundwater (from onsite and off-site monitoring wells) and surface water for analyses. The data collected during this investigation represent the conditions at the sampled locations only.

The conclusions presented in this report represent our professional opinion and are based on the conditions observed on the dates set out in the report, the information available at the time this report was prepared, the scope of work, and any limiting conditions noted herein.

BluMetric Environmental Inc. provides no assurances regarding changes to conditions subsequent to the time of the assessment. BluMetric Environmental Inc. makes no warranty as to the accuracy or completeness of the information provided by others or of the conclusions and recommendations predicated on the accuracy of that information.

Page 16 BluMetric

This report has been prepared for Waste Management of Canada. Any use a third party makes of this report, any reliance on the report, or decisions based upon the report, are the responsibility of those third parties unless authorization is received from BluMetric Environmental Inc. in writing. BluMetric Environmental Inc. accepts no responsibility for any loss or damages suffered by any unauthorized third party as a result of decisions made or actions taken based on this report.

Respectfully submitted,

BluMetric Environmental Inc.

Megan Williamson, B.Sc. Environmental Scientist

François A. Richard, Ph.D, P.Geo Senior Hydrogeologist

Page 17 BluMetric

TABLES

Table 1: Summary of Environmental Monitoring Program

Monitorin	g Locations	Parameter Suite	Monitoring Frequency
Shallow Groundwater Flow Zone Mon	nitors		
M58-4, M68-4, M70-3, M96, M99-2		Groundwater Inorganic & General VOCs	Once each year, in spring
M53-4, M54-4, M66-2, M67-2, M80-2 M103, M104, M114-2, OW37-s	2, M81, M85, M86, M87-2, M101,	Groundwater Inorganic & General VOCs	Twice each year, in spring and fall
Intermediate Bedrock Groundwater Fl	ow Zone Monitors	VOC;	
M56-2, M58-3, M59-2, M59-4, M91-1	Groundwater Inorganic & General	Once each year, in spring	
		VOCs	
M5-3, M6-3, M9-2, M9-3, M52-2, M6 M82-1, M82-2, M106, M108, M109-1, M168, M170, M172, M177, M178R-2,		Groundwater Inorganic & General	Twice each year, in spring and fall
M185-2, M186, M187, M188, M190, N		VOCs	in spring and rain
Surface Water Sampling Locations			
Beechwood Ditch	S4R, S5 and S8R	Surface Water	Three times each
Marysville Creek	\$2, \$3, \$6 and \$7	Inorganic and General	year, in spring,
Unnamed water course in central portion of proposed CAZ	\$18, \$19 and \$20	General	summer ¹ and fall.
Leachate Monitoring Locations			
North Chamber and South Chamber		Leachate Inorganic & General VOCs	Once each year, in spring
Landfill Gas Monitoring Wells			
GM1, GM3, GM4-1, GM4-2, GM5, GN	16	% methane by volume	Twice each year, in spring and fall
Off-site Domestic Water Supply Wells			
1441 County Road 1 West 1483 County Road 1 West 1494 County Road 1 West (UNKN) ² 1499 County Road 1 West 1556 County Road 1 West (UNKN) ² 1614 County Road 1 West 1654 County Road 1 West 1680 County Road 1 West 1695 County Road 1 West 1696 County Road 1 West 1866 County Road 1 West 614 Belleville Road 696 Belleville Road		1,4 dioxane	Once every five years, starting in 2021

¹ The summer monitoring event shall be scheduled after a rainfall of more than 25 mm

² The final list of domestic well locations will depend on confirmation of which addresses have drilled wells (locations where well construction is unknown are denoted UNKN). A residential survey will be completed in order to determine which of these locations are to be sampled. Only those residences with drilled bedrock wells that supply water for domestic use will be sampled; residences that use shallow dug wells or cisterns for water supplies are not included in the program.

Table 2: Analytical Parameters for Water and Leachate Samples

	1.0	
Groundwater Inorganic and Ge		I
Total dissolved solids	Magnesium	Manganese
Alkalinity	Sodium	Ammonia (total)
Conductivity	Potassium	Nitrate
Dissolved organic carbon	Boron	Nitrite
Calcium	Iron	Chloride
		Sulphate
Volatile Organic Compounds (\		
1,4-dioxane	1,2-Dichlorobenzene	1,1,2-Trichloroethane
Benzene	1,3-Dichlorobenzene	1,1-Dichloroethane
Toluene	1,4-Dichlorobenzene	1,2-Dichloroethane
Ethylbenzene	Methylene chloride	1,1-Dichloroethylene
m&p-Xylene	Chloromethane	Cis-1,2-Dichloroethylene
o-Xylene	Chloroethane	Trans-1,2-Dichloroethylene
Styrene	1,1,2,2-Tetrachloroethane	Trichloroethylene
1,3,5-Trimethylbenzene	1,1,1,2-Tetrachloroethane	Tetrachloroethylene
Chlorobenzene	1,1,1-Trichloroethane	Vinyl chloride
Surface Water Inorganic and Ge	eneral Parameters	
1,4-dioxane	Potassium	Nitrate
Total suspended solids	Boron	Nitrite
Total dissolved solids	Cadmium	Chloride
Biological oxygen demand	Chromium (Total, Cr6+, Cr3+)	Sulphate
Chemical oxygen demand	Cobalt	Phenols
Alkalinity	Copper	Total phosphorous
Conductivity	Iron	Naphthalene
Hardness	Lead	
Calcium	Nickel	Field measurements:
Magnesium	Zinc	pH, temperature, conductivity, dissolved
Sodium	Ammonia (total & un-ionized)	oxygen, estimated flow rate
Leachate Inorganic and General	l Parameters	
Total dissolved solids	Dissolved organic carbon	Ammonia (total)
Conductivity	Boron	Total Kjeldahl nitrogen
Alkalinity	Cadmium	Nitrate
pН	Chromium (total)	Nitrite
Hardness	Cobalt	Chloride
Calcium	Copper	Sulphate
Magnesium	Iron	Total phosphorous
Sodium	Lead	Phenols
Potassium	Manganese	Naphthalene
Biological oxygen demand	Nickel	N-nitrosodimethylamine (NDMA)
Chemical oxygen demand	Zinc	

Table 3: Groundwater Elevation Monitoring Locations

Location	Shallow Groundwater Flow Zone	Intermediate Groundwater Flow Zone
West of landfill footprint	M27, M58-4, M67-2, M84, M87-2, M88-2, M89-2, M97, M98, M99-2, M100, M101, M102, OW37-s	M3A-3, M56-2, M58-3, M59-2, M59-3, M59-4, M72, M73, M74, M82- 1, M82-2, M91-1, M95-1
East of landfill footprint	M19, M23, M47-3, M68-4, M70-3, M77, M94-2, M96	M50-3, M52-2, M70-2, M108, M170
North of landfill footprint	M35, M60-4, M65-2, M66-2, M83, M85, M86, M103, M104	M46-2, M60-1, OW1
South of landfill footprint; north of Beechwood Road	M12, M14, M15, M18, M41, M53-4, M54-4, M80-2, M81	M9-2, M9-3, M10-1, M49-1, M53-2, M71, M80-1, M105, M106, M107, M109-1, M109-2, M110-1, M111-1, M112-1, M113-1, M192, M193
South of landfill footprint; south of Beechwood Road	M114-2, M115-2	M63-2, M64-2, M114-1, M116, M121, M122, M123, M125, M166, M167, M168, M173, M174, M176, M177, M178R-1, M178R-2, M178R-3, M178R-4, M179, M180, M181-1, M181-2, M182, M185-1, M185-2, M186, M187, M188, M189, M190, M191

Table 4a: Groundwater Elevations - July 20, 2023

Monitoring	Water Level	Monitoring	Water Level	Monitoring	Water Level	Monitoring	Water Level
Well	(masl)	Well	(masl)	Well	(masl)	Well	(masl)
Shallow Groun	dwater Flow Zo	one					
M12	124.77	M54-4	123.91	M83	123.34	M98	129.02
M14	125.45	M58-4	dry	M84	121.95	M99-2	129.09
M15	dry	M60-4	124.07	M85	119.64	M100	123.92
M18	dry	M65-2	122.82	M86	120.71	M101	122.90
M19	damaged	M66-2	122.08	M87-2	123.49	M102	123.02
M23	dry	M67-2	122.15	M88-2	127.14	M103	122.60
M27	125.71	M68-4	dry	M89-2	128.26	M104	122.76
M35	122.96	M70-3	dry	M94-2	123.49	M114-2	123.00
M41	124.97	M77	124.76	M96	127.44	M115-2	124.05
M47-3	124.22	M80-2	123.32	M97	124.31	OW37-s	121.82
M53-4	dry	M81	124.30				
Intermediate B	edrock Ground	water Flow Zoi	ne				
M3A-3	124.48	M71	123.71	M113-1	122.64	M178R-4	116.39
M9-2	120.14	M72	122.46	M114-1	119.96	M179	109.34
M9-3	120.55	M73	122.50	M116	119.98	M180	111.50
M10-1	120.02	M74	123.27	M121	119.98	M181-1	95.90
M46-2	123.20	M80-1	119.95	M122	119.85	M181-2	105.17
M49-1	119.73	M82-1	122.60	M123	119.61	M182	90.60
M50-3	124.19	M82-2	122.65	M125	120.01	M185-1	114.71
M52-2	120.88	M91-1	122.67	M166	119.64	M185-2	114.72
M53-2	119.71	M95-1	122.55	M167	119.37	M186	114.27
M56-2	122.66	M105	120.11	M168	119.64	M187	90.95
M58-3	122.70	M106	122.56	M170	120.09	M188-1	115.06
M59-2	122.73	M107	120.10	M173	99.97	M189	104.73
M59-3	122.71	M108	119.65	M174	90.88	M190	114.36
M59-4	122.70	M109-1	120.10	M176	109.37	M191	118.58
M60-1	122.65	M109-2	120.12	M177	115.20	M192*	119.63
M63-2	120.74	M110-1	120.10	M178R-1	115.22	M193*	121.10
M64-2	118.65	M111-1	122.62	M178R-2	118.92	OW1	122.87
M70-2	120.07	M112-1	122.63	M178R-3	118.82		
-							

Table 4b: Groundwater Elevations - October 23, 2023

Monitoring	Water Level	Monitoring	Water Level	Monitoring	Water Level	Monitoring	Water Level
Well	(masl)	Well	(masl)	Well	(masl)	Well	(masl)
Shallow Groun	dwater Flow Zo	one					
M12	124.10	M54-4	123.67	M83	123.37	M98	128.29
M14	124.66	M58-4	dry	M84	121.83	M99-2	127.55
M15	dry	M60-4	123.68	M85	119.91	M100	123.40
M18	dry	M65-2	121.72	M86	121.89	M101	122.12
M19	damaged	M66-2	122.02	M87-2	122.77	M102	122.64
M23	125.03	M67-2	121.87	M88-2	125.99	M103	122.11
M27	124.24	M68-4	dry	M89-2	127.49	M104	122.44
M35	dry	M70-3	dry	M94-2	123.38	M114-2	122.23
M41	124.49	M77	123.91	M96	126.37	M115-2	123.41
M47-3	123.61	M80-2	123.01	M97	123.41	OW37-s	121.69
M53-4	124.37	M81	124.05				
Intermediate B	edrock Ground	water Flow Zo	ne				
M3A-3	124.15	M71	123.27	M113-1	122.25	M178R-4	115.94
M9-2	118.17	M72	122.06	M114-1	119.08	M179	108.81
M9-3	119.79	M73	122.10	M116	119.10	M180	110.83
M10-1	119.12	M74	122.72	M121	118.85	M181-1	95.86
M46-2	123.44	M80-1	122.36	M122	119.03	M181-2	104.59
M49-1	118.77	M82-1	122.24	M123	118.87	M182	87.85
M50-3	124.19	M82-2	122.29	M125	118.99	M185-1	113.46
M52-2	120.07	M91-1	122.23	M166	118.89	M185-2	113.46
M53-2	118.82	M95-1	122.17	M167	118.67	M186	114.01
M56-2	112.28	M105	119.12	M168	118.89	M187	88.50
M58-3	122.29	M106	122.18	M170	119.11	M188-1	114.71
M59-2	122.36	M107	119.12	M173	99.46	M189	104.73
M59-3	122.32	M108	118.91	M174	dry	M190	112.71
M59-4	122.33	M109-1	119.11	M176	108.86	M191	118.63
M60-1	122.33	M109-2	119.10	M177	114.49	M192	118.89
M63-2	120.58	M110-1	119.10	M178R-1	114.19	M193	120.47
M64-2	118.43	M111-1	122.20	M178R-2	119.41	OW1	122.68
M70-2	119.04	M112-1	122.26	M178R-3	119.17		

The composition The compos	2 < 0.0001 < 0.001 2 < 0.0001	mg/L wg/L wg	(0) mg/L ry-Dichlorobenzene (0) mg/L v-0.0002 v-0.0002 v-0.0002	2 < 0.0002 < 0.002
Location Date mg/L mg/	mg/L 2 0.0023 2 < 0.0001 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	mg/L < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <	mg/L < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	mg/L 2 < 0.0002 2 < 0.0002 < 0.0002
Location Date mg/L mg/	mg/L 2 0.0023 2 < 0.0001 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	mg/L < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <	mg/L < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	mg/L 2 < 0.0002 2 < 0.0002 < 0.0002
Location Date mg/L mg/	mg/L 2 0.0023 2 < 0.0001 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	mg/L < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <	mg/L < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	mg/L 2 < 0.0002 2 < 0.0002 < 0.0002
Location Date mg/L mg/	mg/L 2 0.0023 2 < 0.0001 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	mg/L < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <	mg/L < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	mg/L 2 < 0.0002 2 < 0.0002 < 0.0002
Location Date mg/L mg/	2 0.0023 2 < 0.0001 3 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001	mg/L < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	2 < 0.0002 2 < 0.0002 < 0.002
Shallow Groundwater Flow Zone M54-4	2 0.0023 2 < 0.0001 3 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001	< 0.0002 < 0.0002 < 0.002 < 0.0002 < 0.0002	2 < 0.0002 2 < 0.0002 < 0.002
M66-2 10/25/2023 380 0.24 0.78 94 84 1400 2 <0.1	2 < 0.0001 < 0.001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	< 0.0001 < 0.001 < 0.0001 < 0.0001 < 0.0001	< 0.0002 < 0.002 < 0.0002 < 0.0002	2 < 0.0002 < 0.002
M67-2 10/24/2023 330 0.69 0.76 45 2 630 2.2 0.43 25 0.018 < 0.1 0.021 8.7 43 4.6 285 < 0.002 < 0.001 < 0.002 < 0.002 M80-2 10/25/2023 340 < 0.15 0.05 70 30 780 2.5 < 0.1 37 0.006 0.12 < 0.01 3.8 38 29 475 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 <	 < 0.001 2 < 0.0001 	< 0.001 < 0.0001 < 0.0001 < 0.0001	< 0.002 < 0.0002 < 0.0002	< 0.002
M81	2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	< 0.0001 < 0.0001	< 0.0002	< 0.0002
M85 10/25/2023 370 < 0.15 1.6 34 10 1300 2.5 < 0.1 19 0.003 3.14 < 0.01 14 210 74 785 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	2 < 0.0001 2 < 0.0001 2 < 0.0001 2 < 0.0001	< 0.0001	1	- 0.0002
M86 10/24/2023 400 < 0.15 1.2 36 28 1000 3.8 < 0.1 27 0.003 0.97 < 0.01 14 140 80 565 < 0.0002 < 0.0001 < 0.0002 < 0.0002 M87-2 10/24/2023 230 < 0.15	2 < 0.0001 2 < 0.0001 2 < 0.0001			
M87-2 10/24/2023 230 < 0.15 0.03 58 17 600 1.8 < 0.1 35 0.017 < 0.1 < 0.01 2.1 12 41 415 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	2 < 0.0001 2 < 0.0001	₹ 0.0001	< 0.0002 < 0.0002	
M101 10/26/2023 450 < 0.15 0.064 150 37 1000 2.6 < 0.1 42 0.014 < 0.1 < 0.01 4 19 64 575 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002	2 < 0.0001	< 0.0001	< 0.0002	
M104 10/26/2023 1300 < 0.15 2.5 150 920 5400 52 < 0.1 140 0.61 14.6 0.021 14 850 40 2970 < 0.001 < 0.001 < 0.001 M114-2 10/25/2023 300 < 0.15	< 0.0001	< 0.0001	< 0.0002	
M114-2 10/25/2023 300 < 0.15 0.024 95 12 750 1.7 < 0.1 16 < 0.002 1.59 < 0.01 1 44 13 440 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0	_	< 0.0001	< 0.0002	
OW37-s 10/26/2023 210 0.24 0.081 73 70 800 2.8 4.4 21 0.31 < 0.1 < 0.01 9.5 46 68 415 < 0.01 < 0.005 < 0.01 < 0.01	< 0.0005	< 0.0005	< 0.001	< 0.001
	2 < 0.0001 < 0.005	< 0.0001 < 0.005	< 0.0002 < 0.01	2 < 0.0002 < 0.01
Intermediate BedrockGroundwater Flow Zone ²				1 0.01
M5-3 10/24/2023 450 1.43 1.1 34 38 1000 1.6 < 0.1 26 < 0.002 < 0.1 < 0.01 13 150 13 565 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M6-3 10/25/2023 370 2.09 1.2 38 1300 5300 69 < 0.1 160 < 0.002 < 0.1 < 0.01 21 860 89 2900 < 0.001 < 0.0005 < 0.001 < 0.0005 M9-2 10/27/2023 450 1.62 0.3 280 840 3600 6.5 21 73 0.63 < 0.1 < 0.01 11 330 < 1 2350 < 0.0002 < 0.0001 < 0.0001 < 0.0002 < 0.0001	< 0.0005 2 < 0.0001	< 0.0005 < 0.0001	< 0.001 < 0.0002	< 0.001 2 < 0.0002
M9-3 10/27/2023 290 1.27 0.52 57 100 920 2.7 0.57 30 0.047 < 0.1 < 0.01 15 73 2.4 390 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.0001	< 0.0002	< 0.0002
M52-2 10/25/2023 260 2.24 1 40 560 2500 2.2 < 0.1 29 0.006 < 0.1 < 0.01 17 410 15 1250 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M64-2 10/26/2023 300 1.08 0.88 52 97 960 1.4 < 0.1 29 0.006 < 0.1 < 0.01 9.6 88 22 465 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01 M70-2 10/25/2023 590 1.75 1.5 38 300 2100 3.9 1.3 27 0.012 < 0.1 < 0.01 2 0.01 2 0.01 2 0.01 2 0.001 2	< 0.005	< 0.005	< 0.01	< 0.01
M70-2 10/25/2023 590 1.75 1.5 38 300 2100 3.9 1.3 27 0.012 < 0.1 < 0.01 12 370 4.7 1130 < 0.001 < 0.0005 < 0.001 < 0.001 M72 10/24/2023 270 0.57 0.39 58 16 650 1.9 < 0.1 33 0.002 < 0.1 < 0.01 7.3 18 42 390 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01	< 0.0005 < 0.005	< 0.0005 < 0.005	< 0.001 < 0.01	< 0.001 < 0.01
M74 10/24/2023 350 1.58 0.47 50 46 830 4.9 0.19 37 0.029 < 0.1 0.021 13 56 10 480 < 0.002 < 0.001 < 0.002 < 0.002 < 0.002	< 0.001	< 0.001	< 0.002	< 0.002
M75 10/24/2023 430 1.8 1.3 36 73 1200 1.5 < 0.1 26 0.005 < 0.1 < 0.01 15 170 62 585 < 0.01 < 0.001 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M80-1 10/25/2023 150 0.47 0.39 20 3.8 380 1.3 < 0.1 11 0.004 < 0.1 < 0.01 4.4 38 27 180 < 0.01 < 0.005 < 0.01 < 0.01 M82-1 10/26/2023 320 0.94 0.83 52 38 870 2.9 < 0.1 27 0.004 < 0.1 < 0.01 0 82 65 440 < 0.002 < 0.001 < 0.002 < 0.002 < 0.002	< 0.005 < 0.001	< 0.005 < 0.001	< 0.01 < 0.002	< 0.01 < 0.002
M82-2 10/26/2023 310 0.37 0.095 96 8.8 700 2.3 < 0.1 26 0.022 < 0.1 < 0.01 3.4 11 48 365 < 0.002 < 0.001 < 0.002 < 0.002	< 0.001	< 0.001	< 0.002	< 0.002
M106 10/24/2023 290 3.49 1.8 190 2100 7600 1.8 < 0.1 120 0.003 < 0.1 < 0.01 29 1200 71 3960 < 0.01 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M108	2 0.00029 < 0.0005	< 0.0001 5 < 0.0005	< 0.0002 < 0.001	2 < 0.0002 < 0.001
M110-1 10/25/2023 630 0.79 0.47 150 200 1800 9.6 0.25 54 0.023 < 0.1 < 0.01 8.6 130 < 1 895 < 0.002 < 0.001 < 0.002 < 0.002	< 0.001	< 0.001	< 0.002	< 0.002
M114-1 10/25/2023 370 0.58 0.2 98 62 1200 4.8 5.5 27 0.27 < 0.1 < 0.01 5.4 96 4.3 640 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M121 10/26/2023 500 1.78 1.1 76 640 3200 5.1 < 0.1 51 0.006 < 0.1 < 0.01 14 510 55 1590 < 0.01 < 0.005 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.0001 < 0.002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.000	< 0.005 2 0.00024	< 0.005 < 0.0001	< 0.01 < 0.0002	< 0.01 2 < 0.0002
M167 10/27/2023 460 1.96 0.92 94 300 2000 3.5 < 0.1 54 0.006 < 0.1 < 0.01 17 210 9.9 955 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.005	< 0.00	< 0.0002
M168 10/27/2023 490 1.4 0.75 120 270 1900 4.6 < 0.1 46 0.003 < 0.1 < 0.01 14 200 13 915 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M170	< 0.001 2 0.00067	< 0.001 0.0001	< 0.002 < 0.0002	< 0.002 2 < 0.0002
M177 10/26/2023 240 0.51 0.33 82 2.5 550 2.4 < 0.1 15 0.005 < 0.1 < 0.01 5.8 7.3 39 265 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.005	< 0.0002	< 0.0002
M178R-2 10/26/2023 350 0.24 0.16 100 27 800 4.7 0.85 20 0.059 < 0.1 < 0.01 4.3 38 23 410 < 0.0002 < 0.0001 < 0.0002 < 0.0002				
M178R-3 10/26/2023 400 0.36 0.19 110 36 910 4.7 1.1 24 0.075 < 0.1 < 0.01 4.9 45 23 455 < 0.0002 < 0.0001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0			< 0.0002 < 0.0002	
M179 10/27/2023 320 0.33 0.33 91 62 860 3.1 0.3 16 0.034 < 0.1 0.045 4.7 67 20 395 < 0.002 < 0.001 < 0.002 < 0.002 < 0.002		< 0.0001	< 0.0002	
M185-1 10/25/2023 230 0.97 0.9 46 260 1500 2 < 0.1 18 0.038 < 0.1 < 0.01 8.6 250 42 765 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005	< 0.005	< 0.01	< 0.01
M185-2 10/25/2023 270 < 0.15 0.088 110 3 580 2.5 0.15 5.9 0.016 < 0.1 < 0.01 1.6 4.3 28 315 < 0.0002 < 0.0001 < 0.0002 < 0.0001 < 0.0002 < 0.0001			< 0.0002	
M186		< 0.0001 < 0.001	< 0.0002 < 0.002	
M188-1 10/26/2023 300 0.64 0.37 60 35 700 2.7 < 0.1 18 0.008 < 0.1 < 0.01 5.2 56 9.4 350 < 0.01 < 0.005 < 0.01 < 0.01	< 0.005		< 0.01	< 0.002
M190 10/25/2023 280 < 0.15 0.071 100 28 680 4.7 < 0.1 10 0.005 < 0.1 < 0.01 3.2 19 24 310 < 0.0002 < 0.0001 < 0.0002 < 0.0001		< 0.0001	< 0.0002	
M192 10/25/2023 650 2.06 2.2 65 320 2300 4.7 0.19 43 0.018 < 0.1 < 0.01 18 370 2.6 1200 < 0.002 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.00		< 0.001 < 0.001	< 0.002 < 0.002	
OW4 10/24/2023 990 1.19 1.2 100 230 2500 26 4 71 0.1 < 0.1 < 0.01 12 390 3.1 1490 < 0.001 < 0.0005 < 0.001 < 0.001		_		

¹ M53-4 Purged Dry - No Sample Collected ² M6-3 and OW4 Purged Dry - No Samples Collected

		1,3,5-Trimethylbenzene mg/L	1,3-Dichlorobenzene (m) mg/L	1,4-Dichlorobenzene (p) mg/L	1,4-Dioxane mg/L	Benzene mg/L	Chlorobenzene mg/L	Chloroethane mg/L	Chloromethane mg/L	Cls-1,2-Dichloroethylene mg/L	Dichloromethane mg/L	Ethylbenzene mg/L	m+p-Xylene mg/L	o-Xylene mg/L	Styrene mg/L	Tetrachloroethylene mg/L	Toluene mg/L	Total Xylenes mg/L	Trans-1,2-dichloroethylene mg/l	Trichloroethylene mg/L	Vinyl Chloride mg/L
Location Shallow Groups	Date Iwater Flow Zone ¹	mg/L Shallow Ground	mg/L dwater Flox	mg/L v Zone ^{1,2}	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
M54-4	10/24/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0005	0.0008	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	0.0034	< 0.0002	< 0.0001	< 0.0001	0.001	< 0.0002
M66-2	10/25/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M67-2	10/24/2023	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002
M80-2 M81	10/25/2023 10/25/2023	< 0.0002 < 0.0002	< 0.0002 < 0.0002	< 0.0002 < 0.0002	< 0.001 < 0.001	< 0.0001 < 0.0001	< 0.0001 < 0.0001	< 0.0002 < 0.0002	< 0.0005 < 0.0005	< 0.0001 < 0.0001	< 0.0005 < 0.0005	< 0.0001 < 0.0001	< 0.0001 < 0.0001	< 0.0001 < 0.0001	< 0.0002 < 0.0002	< 0.0001 < 0.0001	< 0.0002 < 0.0002	< 0.0001 < 0.0001	< 0.0001 < 0.0001	< 0.0001 < 0.0001	< 0.0002 < 0.0002
M85	10/25/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M86	10/24/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M87-2	10/24/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M101	10/26/2023	< 0.0002	< 0.0002	< 0.0002	0.0021	< 0.0001	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M103 M104	10/26/2023 10/26/2023	< 0.0002 < 0.001	< 0.0002 < 0.001	< 0.0002 < 0.001	0.0098 0.11	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0002 < 0.001	< 0.0005 < 0.0025	< 0.0001 < 0.0005	< 0.0005 < 0.0025	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0002 < 0.001	< 0.0001 < 0.0005	< 0.0002 < 0.001	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0002 < 0.001
M114-2	10/25/2023	< 0.0002	< 0.0001	< 0.0001	< 0.001	< 0.0003	< 0.0003	< 0.001	< 0.0025	< 0.0003	< 0.0025	< 0.0003	< 0.0003	< 0.0003	< 0.0001	< 0.0003	< 0.0001	< 0.0003	< 0.0003	< 0.0003	< 0.0001
OW37-s	10/26/2023	< 0.01	< 0.00	< 0.01	< 0.003	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
Intermediate Be	drockGroundwater Fl	Intermediate Be	edrockGrou	indwater Flo	w Zone										•	•	•				
M5-3	10/24/2023	< 0.01	< 0.01	< 0.01	< 0.001	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M6-3 M9-2	10/25/2023 10/27/2023	< 0.001 < 0.0002	< 0.001 < 0.0002	< 0.001 < 0.0002	0.3 0.018	< 0.0005 0.00053	< 0.0005 < 0.0001	< 0.001 0.028	< 0.0025 < 0.0005	< 0.0005 < 0.0001	< 0.0025 < 0.0005	< 0.0005 < 0.0001	< 0.0005 < 0.0001	< 0.0005 < 0.0001	< 0.001 < 0.0002	< 0.0005 < 0.0001	< 0.001 < 0.0002	< 0.0005 < 0.0001	< 0.0005 < 0.0001	< 0.0005 < 0.0001	< 0.001 0.00024
M9-3	10/27/2023	< 0.01	< 0.00	< 0.01	0.002	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M52-2	10/25/2023	< 0.01	< 0.01	< 0.01	< 0.001	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M64-2 M70-2	10/26/2023 10/25/2023	< 0.01 < 0.001	< 0.01 < 0.001	< 0.01 < 0.001	0.003	< 0.005 < 0.0005	< 0.005 < 0.0005	< 0.01 < 0.001	< 0.025 < 0.0025	< 0.005 < 0.0005	< 0.025 < 0.0025	< 0.005 < 0.0005	< 0.005 < 0.0005	< 0.005 < 0.0005	< 0.01 < 0.001	< 0.005 < 0.0005	< 0.01 < 0.001	< 0.005 < 0.0005	< 0.005 < 0.0005	< 0.005 < 0.0005	< 0.01 < 0.001
M72	10/24/2023	< 0.001	< 0.001	< 0.001	< 0.000	< 0.0005	< 0.0005	< 0.001	< 0.0025	< 0.005	< 0.0025	< 0.005	< 0.0005	< 0.0005	< 0.001	< 0.005	< 0.001	< 0.0005	< 0.005	< 0.0005	< 0.001
M74	10/24/2023	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002
M75	10/24/2023	< 0.01	< 0.01	< 0.01	< 0.001	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M80-1 M82-1	10/25/2023 10/26/2023	< 0.01 < 0.002	< 0.01 < 0.002	< 0.01 < 0.002	< 0.001 < 0.001	< 0.005 < 0.001	< 0.005 < 0.001	< 0.01 < 0.002	< 0.025 < 0.005	< 0.005 < 0.001	< 0.025 < 0.005	< 0.005 < 0.001	< 0.005 < 0.001	< 0.005 < 0.001	< 0.01 < 0.002	< 0.005 < 0.001	< 0.01 < 0.002	< 0.005 < 0.001	< 0.005 < 0.001	< 0.005 < 0.001	< 0.01 < 0.002
M82-2	10/26/2023	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002
M106	10/24/2023	< 0.01	< 0.01	< 0.01	< 0.001	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M108 M109-1	10/25/2023 10/25/2023	< 0.0002 < 0.001	< 0.0002 < 0.001	< 0.0002 < 0.001	0.0087 0.032	< 0.0001 < 0.0005	< 0.0001 < 0.0005	0.0034 0.0087	< 0.0005 < 0.0025	< 0.0001 < 0.0005	< 0.0005 < 0.0025	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0002 < 0.001	< 0.0001 < 0.0005	< 0.0002 < 0.001	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0001 < 0.0005	< 0.0002 < 0.001
M110-1	10/25/2023	< 0.001	< 0.001	< 0.001	0.034	< 0.0003	< 0.0003	0.0007	< 0.0025	< 0.001	< 0.0023	< 0.0003	< 0.001	< 0.0003	< 0.002	< 0.001	< 0.001	< 0.0003	< 0.0003	< 0.0003	< 0.002
M114-1	10/25/2023	< 0.01	< 0.01	< 0.01	0.005	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M121	10/26/2023	< 0.01 < 0.0002	< 0.01	< 0.01 < 0.0002	0.0059 0.0044	0.13 < 0.0001	< 0.005 < 0.0001	< 0.01 0.0032	< 0.025 < 0.0005	< 0.005 < 0.0001	< 0.025 < 0.0005	0.0064 < 0.0001	0.061 < 0.0001	< 0.005 < 0.0001	< 0.01 < 0.0002	< 0.005 < 0.0001	< 0.01 < 0.0002	0.061	< 0.005 < 0.0001	< 0.005 < 0.0001	< 0.01 < 0.0002
M123 M167	10/27/2023 10/27/2023	< 0.0002	< 0.0002 < 0.01	< 0.0002	0.0044	< 0.0001	< 0.0001	< 0.01	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.005	< 0.005	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M168	10/27/2023	< 0.01	< 0.01	< 0.01	0.0084	< 0.005	< 0.005	< 0.01	< 0.025	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01
M170	10/25/2023	< 0.002	< 0.002	< 0.002	0.012	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002
M172 M177	10/24/2023 10/26/2023	< 0.0002 < 0.01	< 0.0002 < 0.01	< 0.0002 < 0.01	0.008 < 0.001	< 0.0001 < 0.005	< 0.0001 < 0.005	0.0026 < 0.01	< 0.0005 < 0.025	< 0.0001 < 0.005	0.0037 < 0.025	< 0.0001 < 0.005	< 0.0001 < 0.005	< 0.0001 < 0.005	< 0.0002 < 0.01	< 0.0001 < 0.005	< 0.0002 < 0.01	< 0.0001 < 0.005	< 0.0001 < 0.005	< 0.0001 < 0.005	< 0.0002 < 0.01
M178R-2	10/26/2023	< 0.0002	< 0.0002		0.0037		< 0.0001		< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001		< 0.0001	
M178R-3	10/26/2023	< 0.0002	< 0.0002	< 0.0002	0.0047	< 0.0001	< 0.0001	0.00093	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	
M178R-4 M179	10/26/2023 10/27/2023	< 0.0002 < 0.002	< 0.0002	< 0.0002 < 0.002	0.0052 < 0.001	< 0.0001 < 0.001	< 0.0001 < 0.001	0.0013 < 0.002	< 0.0005 < 0.005	< 0.0001 < 0.001	< 0.0005 < 0.005	< 0.0001 < 0.001	< 0.0001 < 0.001	< 0.0001 < 0.001	< 0.0002 < 0.002	< 0.0001 < 0.001	< 0.0002 < 0.002	< 0.0001 < 0.001	< 0.0001 < 0.001	< 0.0001 < 0.001	< 0.0002 < 0.002
M185-1	10/27/2023	< 0.002	< 0.002 < 0.01	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002
M185-2	10/25/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	0.00015	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0002
M186	10/27/2023	< 0.0002	< 0.0002	< 0.0002	< 0.001	0.00017	< 0.0001	< 0.0002	< 0.0005	< 0.0001	< 0.0005	< 0.0001	0.00011	0.00024	< 0.0002	< 0.0001	< 0.0002	0.00035	< 0.0001	< 0.0001	< 0.0002
M187	10/26/2023	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001 < 0.005	< 0.005 < 0.025	< 0.001 < 0.005	< 0.001 < 0.005	< 0.001	< 0.002	< 0.001 < 0.005	< 0.002	< 0.001 < 0.005	< 0.001	< 0.001	< 0.002
M188-1 M190	10/26/2023 10/25/2023	< 0.01 < 0.0002	< 0.01 < 0.0002	< 0.01 < 0.0002	< 0.001 < 0.001	< 0.005 < 0.0001	< 0.005 < 0.0001	< 0.01 < 0.0002	< 0.025 < 0.0005	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005 < 0.0001	< 0.01 < 0.0002	< 0.005	< 0.01 < 0.0002	< 0.005	< 0.005 < 0.0001	< 0.005 < 0.0001	< 0.01 < 0.0002
M192	10/25/2023	< 0.002	< 0.002	< 0.002	0.0094	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	0.0021	< 0.001	< 0.001	< 0.001	< 0.002
OW1	10/24/2023	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.005	< 0.001	< 0.005	0.002	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002
OW4	10/24/2023	< 0.001	< 0.001	< 0.001	0.044	< 0.0005	< 0.0005	< 0.001	< 0.0025	< 0.0005	< 0.0025	0.003	< 0.0005	< 0.0005	< 0.001	< 0.0005	0.0037	< 0.0005	< 0.0005	< 0.0005	< 0.001

¹ M53-4 Purged Dry - No Sample Collecte ² M6-3 and OW4 Purged Dry - No Sam

Table 5b: Groundwater Quality Results and Reasonable Use Limits - October 24 - 26, 2023

		1,4-dioxane	Alkalinity	Chloride	Dissolved Organic Carbon	lron	Manganese	Sodium	Total Dissolved Solids	1,1-dichloroethylene	Benzene	Ethylbenzene	Toluene	Xylenes (Total)
Name	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Shallow Grou			200	120	2.6	0.10	0.034	100	452	0.0025	0.0014	0.0012	0.0121	0.15
M54-4	10/24/2023	<i>0.001*</i> < 0.001	390 390	130 55	3.6 3.1	<i>0.18</i> < 0.1	0.034	109 61	452 585	<i>0.0035</i> < 0.0001	<i>0.0014</i> < 0.0001	<i>0.0013</i> < 0.0001	<i>0.0121</i> < 0.0002	<i>0.15</i> < 0.0001
M66-2	10/24/2023	< 0.001	380	84	2	< 0.1	0.011	140	750	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001
M67-2	10/24/2023	< 0.001	330	2	2.2	0.43	0.018	43	285	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
M86	10/24/2023	< 0.001	400	28	3.8	< 0.1	0.003	140	565	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001
75%		n/a	293	98	2.7	0.14	0.026	82	339	0.0026	0.0011	0.00098	0.0091	0.11
M80-2	10/25/2023	< 0.001	340	30	2.5	< 0.1	0.006	38	475	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001
M87-2	10/24/2023	< 0.001	230	17	1.8	< 0.1	0.017	12	415	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001
OW37-s	10/26/2023	< 0.003	210	70	2.8	4.4	0.31	46	415	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005
	BedrockGrour	ndwater Flov	v Zone											
RI		0.001*	400	132	3.5	0.18	0.032	106	<i>465</i>	0.0035	0.0014	0.0013	0.0121	0.15
M177	10/26/2023	< 0.001	240	2.5	2.4	< 0.1	0.005	7.3	265	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005
M179	10/27/2023	< 0.001	320	62	3.1	0.3	0.034	67	395	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
M185-1	10/25/2023	< 0.001	230	260	2	< 0.1	0.038	250	765	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005
M185-2	10/25/2023	< 0.001	270	3	2.5	0.15	0.016	4.3	315	< 0.0001	0.00015	< 0.0001	< 0.0002	< 0.0001
M186	10/27/2023	< 0.001	330	1100	1.5	0.16	0.046	730	2270	< 0.0001	0.00017	< 0.0001	< 0.0002	0.00035
M187	10/26/2023	< 0.001	250	130	2.3	< 0.1	0.005	100	640	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
M188-1	10/26/2023	< 0.001	300	35	2.7	< 0.1	0.008	56	350	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005
M190	10/25/2023	< 0.001	280	28	4.7	< 0.1	0.005	19	310	< 0.0001	< 0.0001	< 0.0001	< 0.0002	< 0.0001
M192	10/25/2023	0.0094	650	320	4.7	0.19	0.018	370	1200	< 0.001	< 0.001	< 0.001	0.0021	< 0.001
	RUL†	n/a	300	99	2.63	0.14	0.024	80	349	0.0026	0.0011	0.00098	0.0091	0.11
M80-1	10/25/2023	< 0.001	150	3.8	1.3	< 0.1	0.004	38	180	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005
M82-1	10/26/2023	< 0.001	320	38	2.9	< 0.1	0.004	82	440	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
M82-2	10/26/2023	< 0.001	310	8.8	2.3	< 0.1	0.022	11	365	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
M106	10/24/2023 RUL for 1.4 did	< 0.001	290	2100	1.8	< 0.1	0.003	1200	3960	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005

^{*} Site-specific RUL for 1,4 dioxane set by ERT Order dated December 24, 2015

0.05 Groundwater results exceed Reasonable Use Limits (RUL)

[†] Wells located on the boundary of WM property, including the CAZ boundary, are compared to 75% of RUL concentrations

Table 6a: Surface Water Characteristics - July 27, 2023

Date	Parameter	Surface Water Station											
Date	raiailletei		S2	S3	S4R	S 5	S6	S7	S8R	S18	S19	S20	
	Velocity:	m/s											
	Depth:	m	Dry	NM	Dry	Dry	Dry	NM	Dry	NM	NM		
7/27/2023	Width:	m										Dry	
	Estimated	3/-											
	Flow Rate:	m ³ /s											

NM: Not Measured (Flow was insufficient, water was ponded, or unable to measure due to vegetation)

Table 6b: Surface Water Characteristics - October 24, 2023

Date	Parameter			Surface Water Station											
Date	rarameter		S2	S3	S4R	S 5	S6	S7	S8R	S18	S19	S20			
	Velocity:	m/s													
	Depth:	m	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry			
2021-10-27	Width:	m													
	Estimated	37.													
	Flow Rate:	m³/s													

NM: Not Measured (Flow was insufficient, water was ponded, or unable to measure due to vegetation)

Table 7a: Surface Water Quality Results - July 27, 2023

				Marysvi	lle Creek			Beechwood Ditch		South of Beechwood Road			
			S2	\$3	\$6	\$7	\$ 5	S4R	S8R	S18	S19	S20	
			(upstream)	(downstream)	(downstream)	(downstream)	(upstream)	(downstream)	(downstream)	(upstream)	(downstream)	(downstream)	
		Date	7/27/2023	7/27/2023	7/27/2023	7/27/2023	7/27/2023	7/27/2023	7/27/2023	7/27/2023	7/27/2023	7/27/2023	
Reading Name	Units	PWQO											
Inorganic and General Parameters													
Alkalinity	mg/L			290		84				180	160		
Ammonia	mg/L			0.19		1.43				< 0.15	< 0.15		
Ammonia (unionized)	mg/L	0.02		< 0.00061		0.0089				< 0.00057	< 0.0012		
Biochemical Oxygen Demand	mg/L			< 2		5				3	< 2		
Chemical Oxygen Demand	mg/L			12		42				36	48		
Chloride	mg/L			43		9.1				< 1	11		
Conductivity	μS/cm			840		450				380	400		
Hardness	mg/L		DRY	390	DRY	210	DRY	DRY	DRY	200	200	DRY	
Nitrate	mg/L			0.14		17.7				< 0.1	< 0.1		
Nitrite	mg/L			< 0.01		0.05				< 0.01	< 0.01		
Phenols	mg/L	0.001		0.0011		0.0013				0.0015	0.0015		
Phosphorus (total)	mg/L	0.03		0.037		0.15				0.081	0.076		
Sulphate	mg/L			71		48				13	25		
Total Dissolved Solids	mg/L			560		370				255	285		
Total Suspended Solids	mg/L			< 10		< 10				< 10	19		
Metals				1							T		
Boron	mg/L	0.2		0.092		0.034				< 0.02	0.056		
Cadmium	mg/L			< 0.0001		< 0.0001				< 0.0001	< 0.0001		
Calcium	mg/L			110		98				73	67		
Chromium (III)	mg/L	0.0089		< 0.005		< 0.005				< 0.005	< 0.005		
Chromium (VI)	mg/L	0.001		< 0.0005		< 0.0005				< 0.0005	< 0.0005		
Chromium (Total)	mg/L	0.0000		< 0.005		< 0.005				< 0.005	< 0.005		
Cobalt	mg/L	0.0009	2014	< 0.0005 < 0.002	551	0.0007	551	2014	551	< 0.0005 < 0.002	< 0.0005 < 0.002	551	
Copper	mg/L	0.005	DRY		DRY	0.008	DRY	DRY	DRY			DRY	
Iron	mg/L	0.3		0.35		0.000/				0.96	1.1		
Lead	mg/L	0.005		< 0.0005 21		0.0006 8.8				< 0.0005 4.8	< 0.0005 5.6		
Magnesium Nickel	mg/L	0.025		< 0.001		0.001				< 0.001	< 0.001		
	mg/L	0.025		7.1		3.8				3.3	2		
Potassium	mg/L												
Sodium	mg/L	0.00		31		8.4				5.7	12		
Zinc	mg/L	0.02		< 0.01		< 0.01		I		< 0.01	< 0.01		
Volatile Organic Compounds (VO		2.55						I			1 0		
1,4-dioxane	mg/L	0.02	DRY	< 0.001	DRY	< 0.001	DRY	DRY	DRY	< 0.001	< 0.001	DRY	
Naphthalene	mg/L	0.007		< 0.00005		< 0.00005				< 0.00005	< 0.00005		
Field Measurements				,							1		
pH (Field)	unitless	6.5-8.5		6.87		7.12				6.72	7.22		
Conductivity (Field)	μS/cm		DRY	726	DRY	404.7	DRY	DRY	DRY	292	360	DRY	
Dissoved Oxygen (Field)	mg/L			1.27		2.46	2.1.1			3.65	3.06	2,1,1	
Temperature (Field)	°C			11.4		19.7				25.8	20.3		

Exceeds PWQO

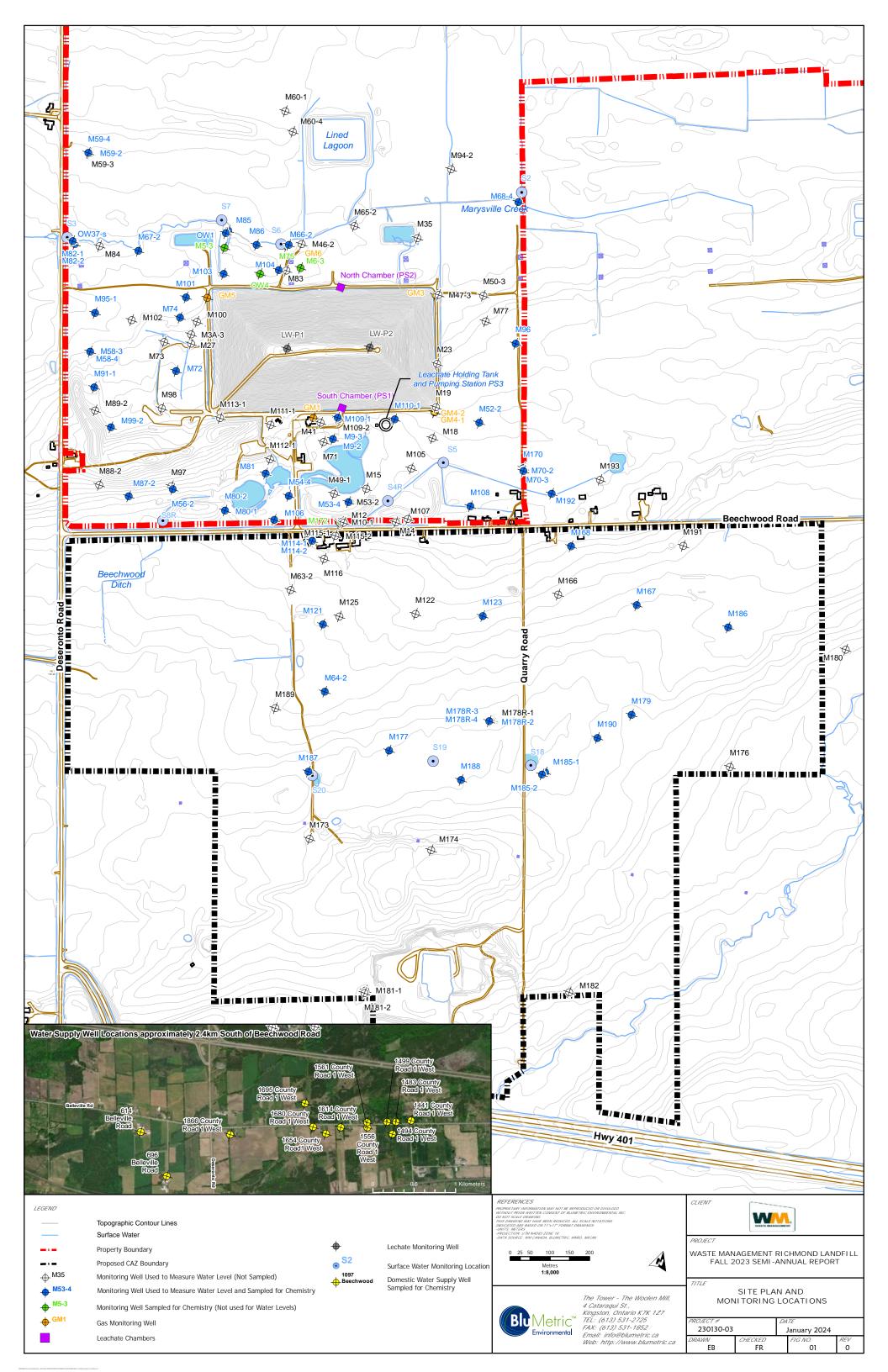
Table 7b: Surface Water Quality Results - October 24, 2023

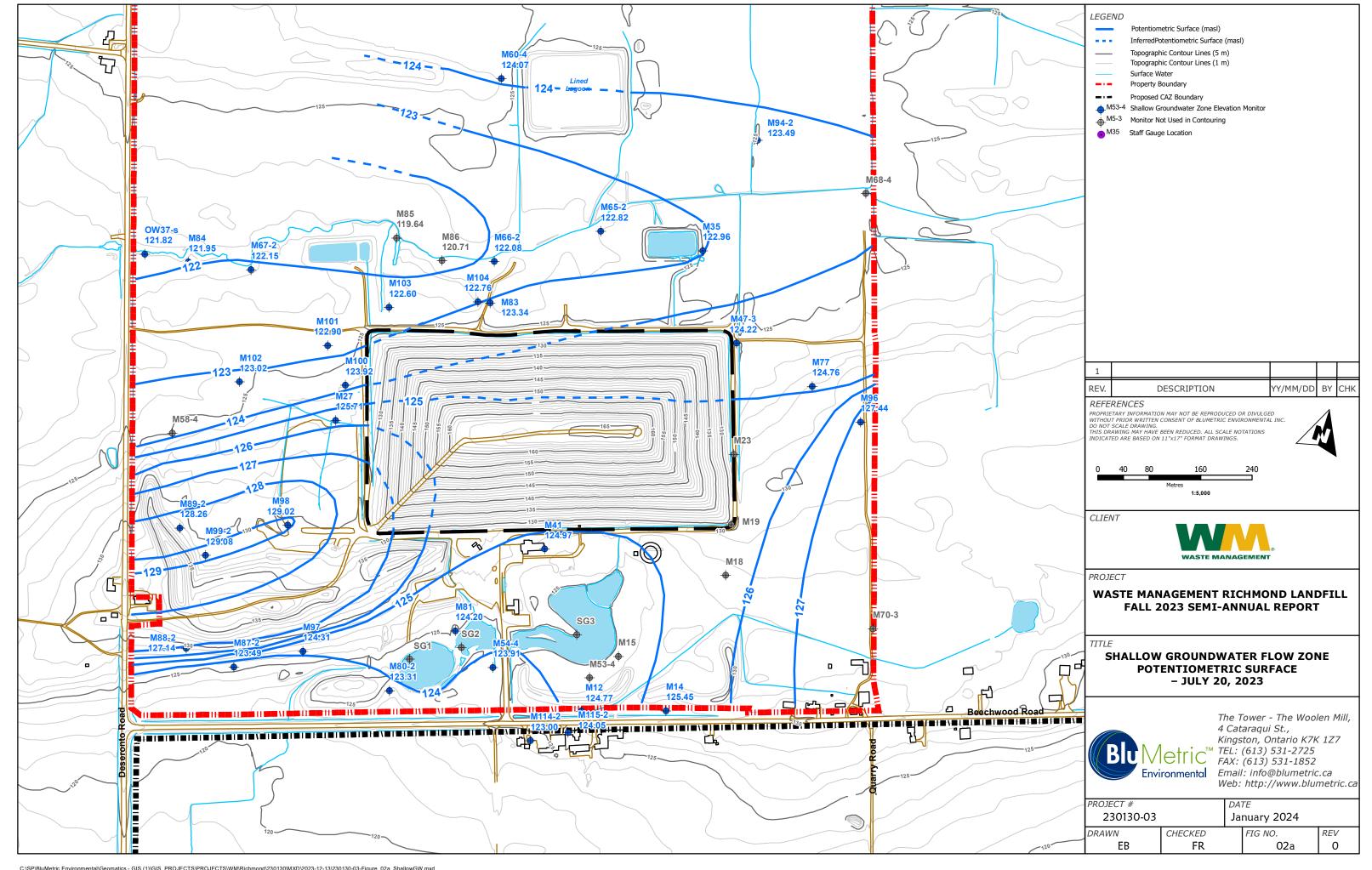
			Marysville Creek			Beechwood Ditch			South of Beechwood Road			
			S2	\$3	\$6	\$7	\$5	S4R	S8R	S18	S19	\$20
			(upstream)	(downstream)	(downstream)	(downstream)	(upstream)	(downstream)	(downstream)	(upstream)	(downstream)	(downstream)
		Date	10/24/2023	10/24/2023	10/24/2023	10/24/2023	10/24/2023	10/24/2023	10/24/2023	10/24/2023	10/24/2023	10/24/2023
Reading Name	Units	PWQO										
Inorganic and General Parameters												
Alkalinity	mg/L											
Ammonia	mg/L											
Ammonia (unionized)	mg/L	0.02										
Biochemical Oxygen Demand	mg/L											
Chemical Oxygen Demand	mg/L											
Chloride	mg/L											
Conductivity	μS/cm											
Hardness	mg/L		D.m. /	D.m.(D-11.	D.m. r	D.m.r	D	D.m. /	D.m.(D.m.r	D
Nitrate	mg/L		Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Nitrite	mg/L											
Nitrate + Nitrite	mg/L											
PhenoIs	mg/L	0.001										
Phosphorus (total)	mg/L	0.03										
Sulphate	mg/L											
Total Dissolved Solids	mg/L											
Total Suspended Solids	mg/L											
Metals											•	
Boron	mg/L	0.2										
Cadmium	mg/L											
Calcium	mg/L											
Chromium (III)	mg/L	0.0089										
Chromium (VI)	mg/L	0.001										
Chromium (Total)	mg/L											
Cobalt	mg/L	0.0009										
Copper	mg/L	0.005	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Iron	mg/L	0.3	,	,	<u>,</u>		<u>,</u>	,	<u>,</u>	,	,	,
Lead	mg/L	0.005										
Magnesium	mg/L											
Nickel	mg/L	0.025										
Potassium	mg/L											
Sodium	mg/L											
Zinc	mg/L	0.02										
Volatile Organic Compounds (VOCs)		2.03									<u> </u>	
1,4-dioxane	mg/L	0.02						1			1	
Naphthalene	mg/L	0.02	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
· · · · · · · · · · · · · · · · · · ·	IIIg/L	0.007										
Field Measurements pH (Field)	unitless	6.5-8.5										
Conductivity (Field)	µS/cm	0.0-0.0		Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
			Dry									
Dissoved Oxygen (Field)	mg/L		_									
Temperature (Field)	°C											

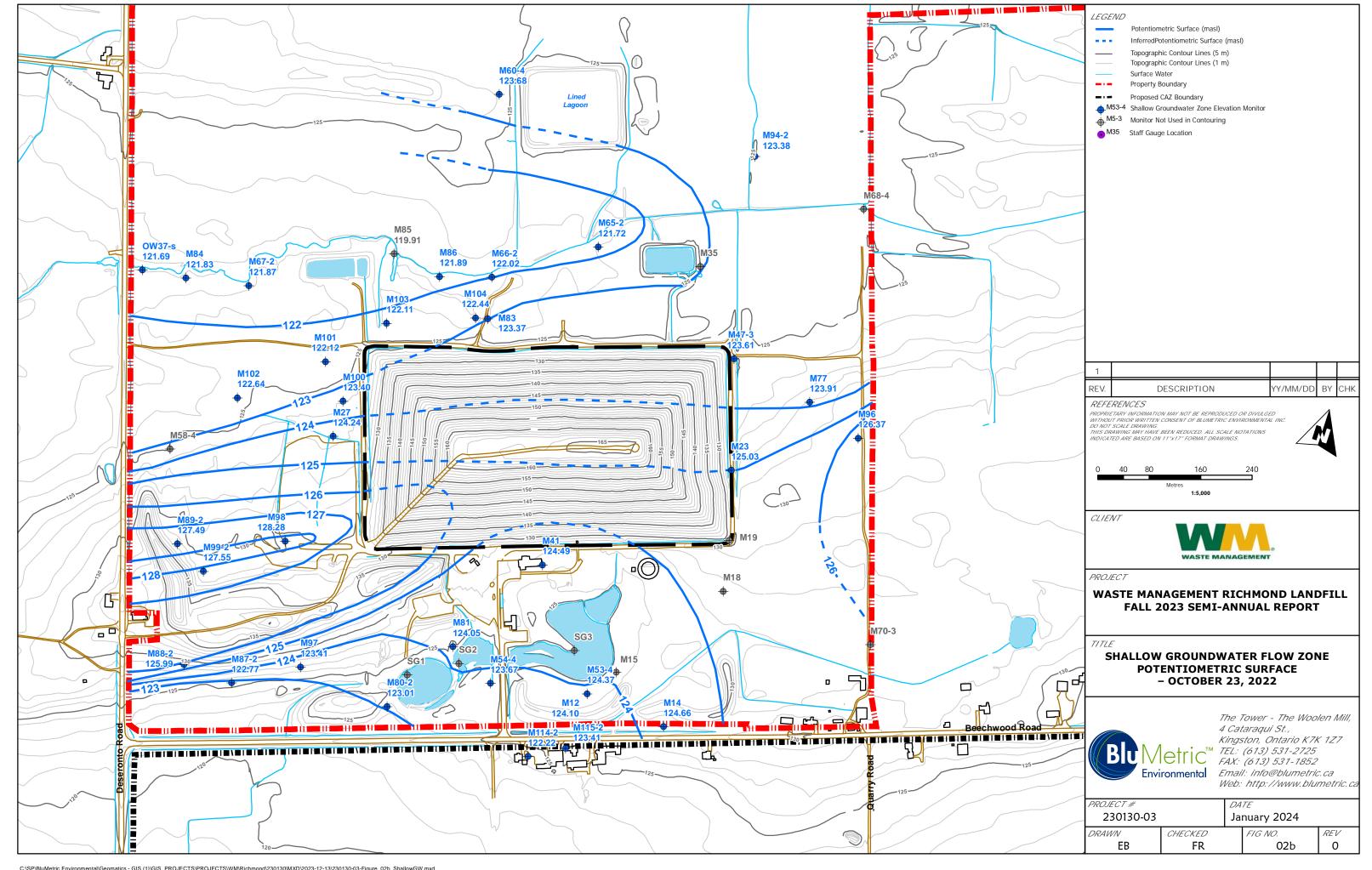
Exceeds PWQO

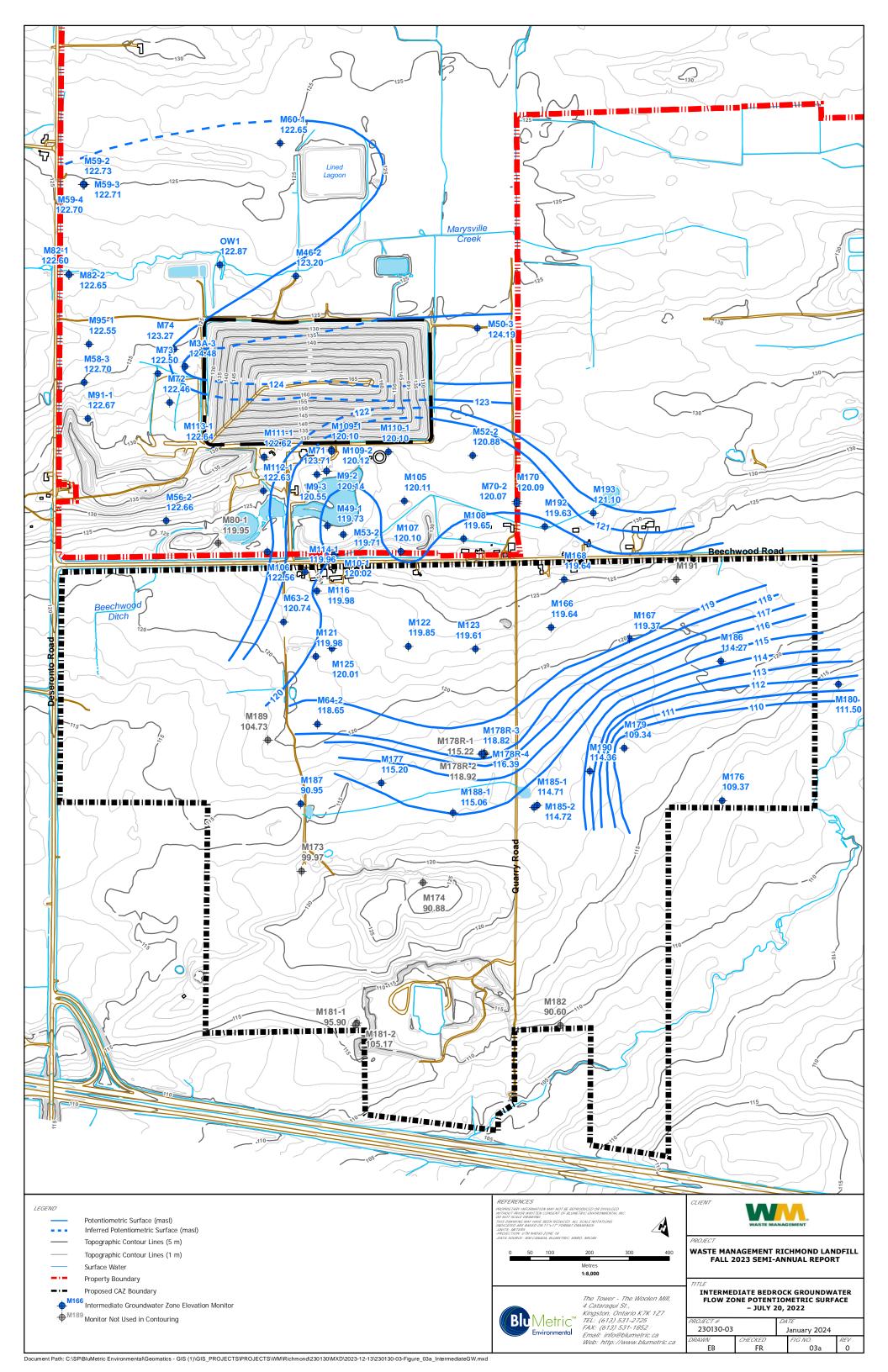
Table 8: Subsurface Gas Monitoring Results - November 3, 2023

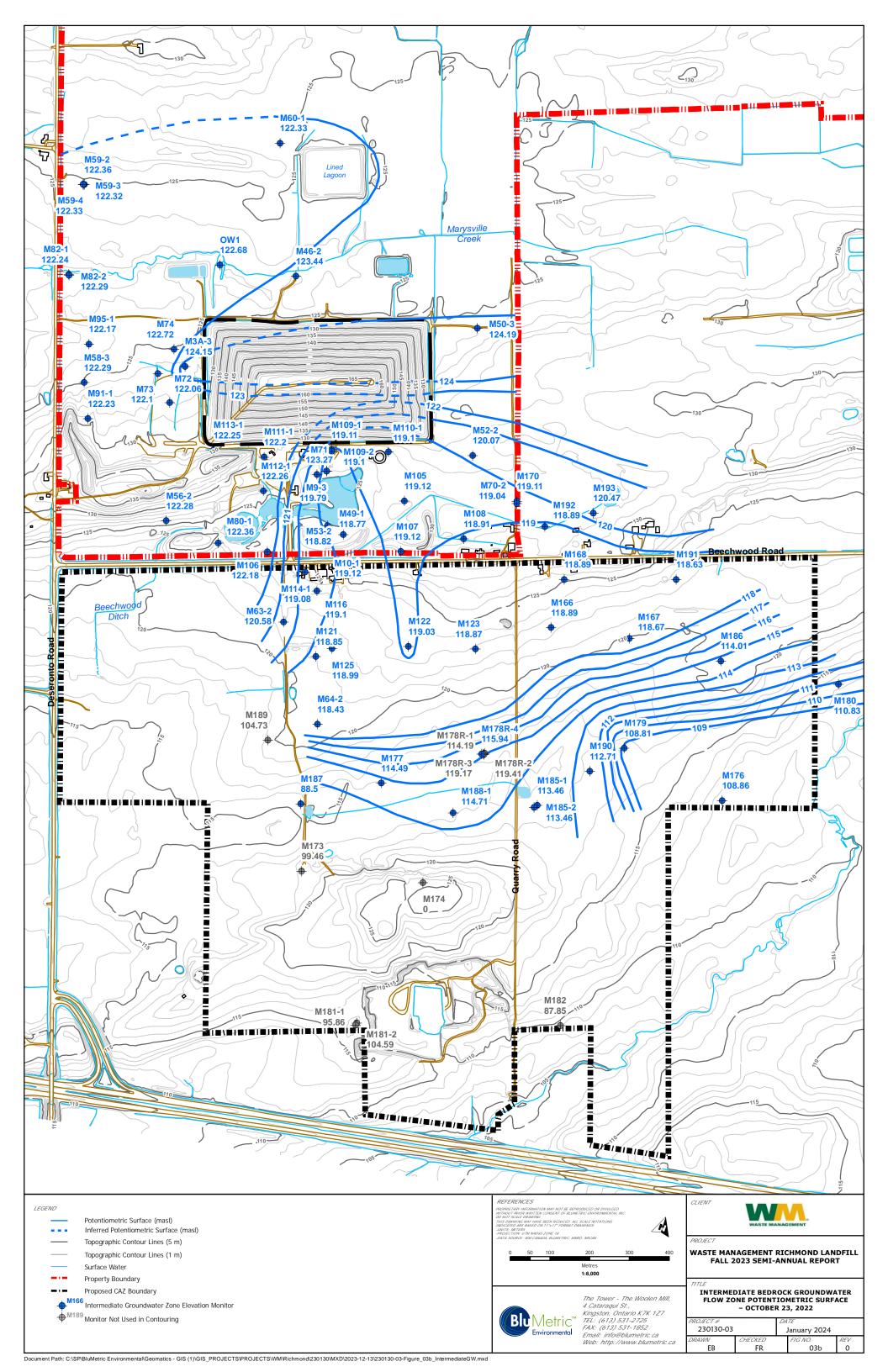
Gas Monitor	Location	Reading (ppm)	
GM1	North of garage area, south of waste mound	0	
GM3	Northeast corner of waste mound	10	
GM4-1	Southeast corner of waste mound	45	
GM4-2	Southeast corner or waste mound	0	
GM5	Northwest corner of waste mound	15	
GM6	North of waste mound	5	

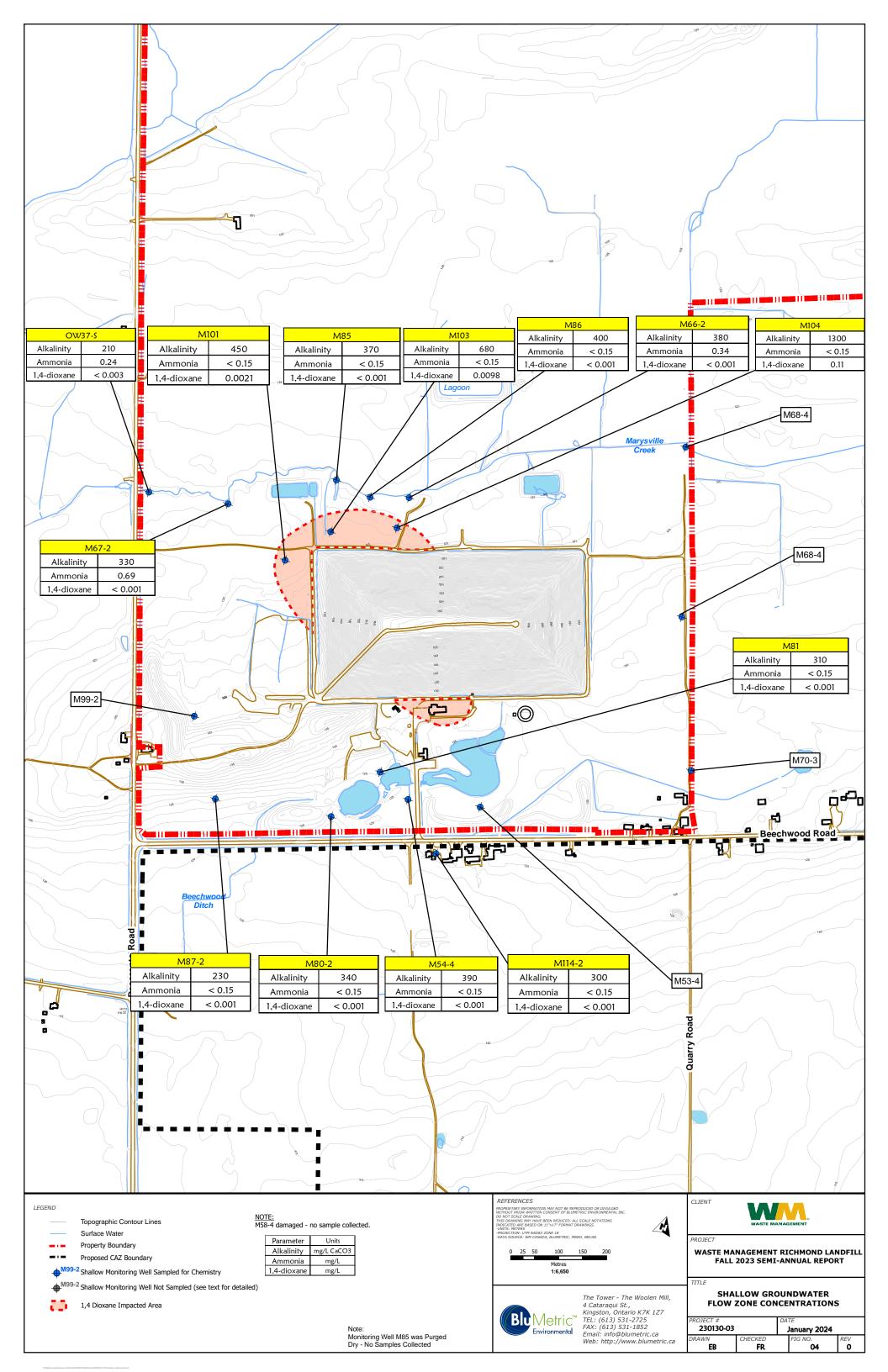

Table 9: Additional Investigations

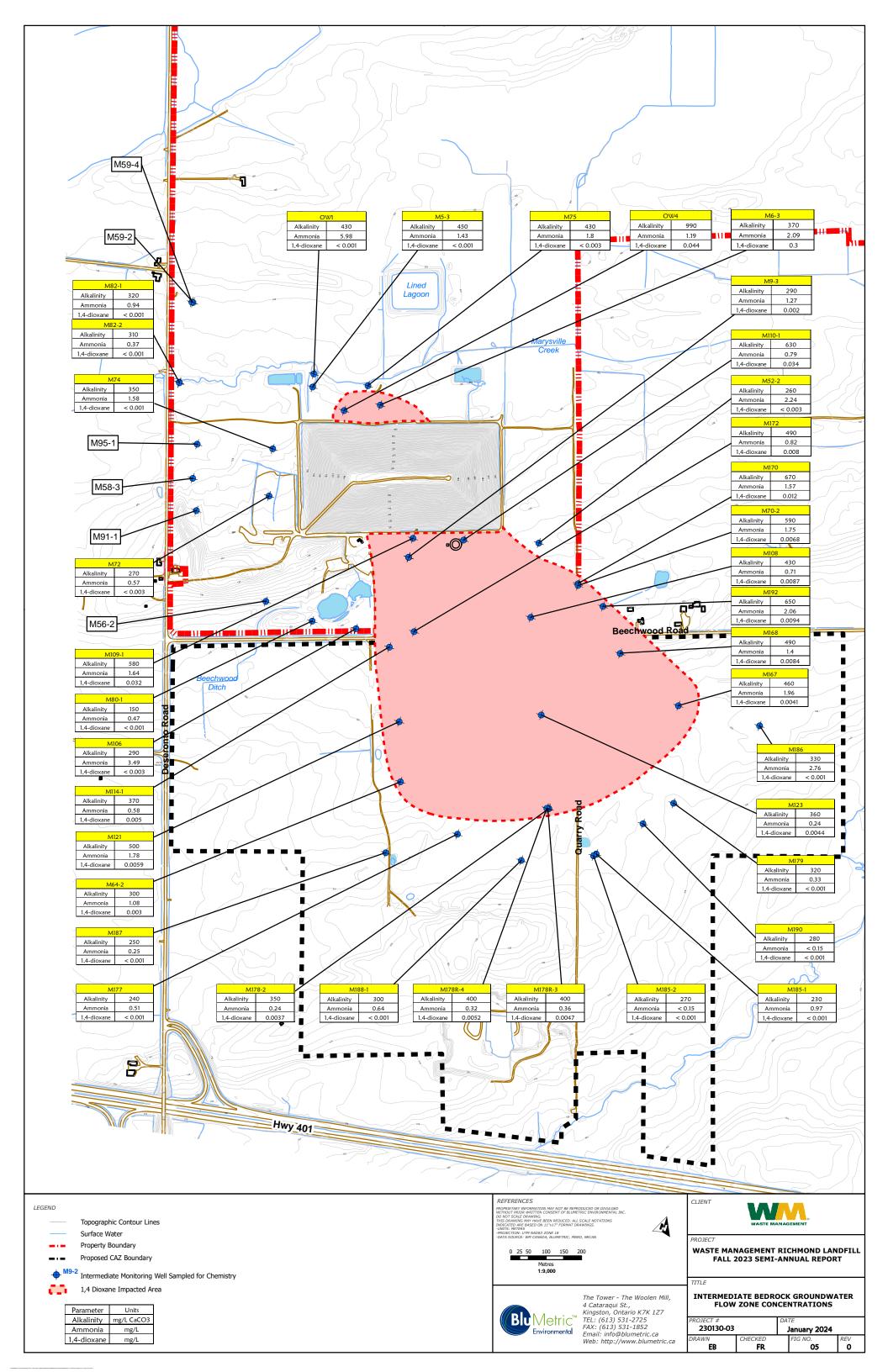

Description of Activities in 2023	Reporting Completed in 2023	Anticipated / Planned Work in 2024	
Non-Routine Investigations			
- Sampling and cleanup related to minor leachate release from leaking temporary storage tank	- Notification of On-Site Leachate Release dated March 30, 2023 - Sampling Results Following Leachate Release dated June 14, 2023	- None	
North Lagoon Investigation, Water Balance update and Pumping (June to October)	- North Lagoon Monitoring Results dated May 5, 20223 - 2022/2023 Water Balance for the North Lagoon dated June 21, 2023	- Finish Emptying North Lagoon	
North Lagoon Liner/Earthworks Repair	N/A	N/A	
· ECA No. xxx Amendment	- Updated Post-Closure Environmental Monitoring Plan (EMP) dated May 5, 2023	- Finalize ECA Amendment Application (CAZ Approval & Final Post-Closure EMP)	
· ECA No. xxx Amendment	- Updated Conceptual Design for Southeast Hydraulic Control System (HCS) dated May 5, 2023	- Finalize ECA Amendment Application (CAZ Approval & Final Post-Closure EMP)	
Town of Greater Napanee & Kingston WWTP Requirements:			
· Monthly North/South Chambers combined leachate sampling (Jan-Dec)	- Monthly reports prepared for the Town of Greater Napanee and City of Kingston	- Monitoring and reporting to continue in 2024	
ISW ECA Monitoring Requirements - Storm Water Ponds and Leachate:			
 Storm Water Ponds Monthly sampling for inorganic and general chemistry parameter lists (March, April, May, October, November, December) Quarterly Sampling of the ECA Storm water ponds for Toxicity (March, June, September, December) Leachate (North Chamber) Quarterly sampling list (March, August, October, December) Annual sampling chemistry list (May) 	- Monitoring results from the 2022 calendar year for the stormwater ponds and leachate locations were reported in the 2022 Annual Report, prepared by WSP Canada Inc. and dated January 2023	- Monitoring and reporting to continue in 2024	




FIGURES







APPENDIX A

Monitoring Well Inventory

	Coordinates (UT)	M NAD83 Zone 18)
Monitoring Well	Easting	Northing
2054	335293	4902797
2055	335402	4902782
M3A-1	334990	4902928
M3A-2	334990	4902930
M3A-3	334990	4902930
M4-1	335006	4903036
M4-2	335006	4903038
M4-3	335006	4903038
M5-1	335003	4903162
M5-2	335003	4903163
M5-3	335003	4903163
M6-1	335200	4903172
M6-2	335201	4903174
M6-3	335201	4903174
M9-1	335410	4902787
M9-2	335410	4902789
M9-3	335410	4902789
M9R-1	335400	4902787
M10-1	335494	4902596
M10-2	335494	4902596
M10-3	335494	4902594
M12	335500	4902596
M14	335625	4902637
M15	335528	4902695
M16	335447	4902710
M18	335648	4902866
M19	335632	4902944
M23	335602	4903049
M27	334997	4902908
M28	334897	4902853
M29	334924	4902983
M30	334999	4903033
M31	334857	4902977
M35	335458	4903336
M38	335006	4902978
M39	335299	4903310
M41	335368	4902818
M42-1	335006	4903006
M42-2	335007	4903008
M42-3	335007	4903008
M43-1	335475	4902588
M43-2	335476	4902590
M43-3	335476	4902590
M45-1	334790	4904582
M45-2	334790	4904582
M45-3	334790	4904582
M46-1	335185	4903230
M46-2	335185	4903230
M47-1	335552	4903232
M47-1	335552	4903214
M47-3	335552	4903215
M48-1	334838	4902564
M48-2	334839	4902565
N140-Z	33 4 037	4302303

Monitoring Well Easting Northing M48-3 334839 4902565 M49-1 335454 4902660 M49-2 335455 4902660 M49-3 335455 4902660 M50-1 335660 4903247 M50-2 335660 4903248 M50-3 335660 4903248 M51-1 335714 4903075 M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 33549 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902649 M54-1 335346 490262 M54-1 335346 490262 M54-3 335347 490262 M54-4		Coordinates (UT)	M NAD83 Zone 18)
M49-1 335454 4902668 M49-2 335455 4902660 M49-3 335455 4902660 M50-1 335660 4903248 M50-2 335660 4903248 M50-3 335660 4903248 M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M51-3 335748 4902939 M52-1 335748 4902940 M52-3 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335347 4902623 M54-1 335346 4902649 M54-2 335347 4902620 M54-3 335347 4902620 M54-4 335348 490214 M55-1 <td< th=""><th>Monitoring Well</th><th>Easting</th><th>Northing</th></td<>	Monitoring Well	Easting	Northing
M49-2 335455 4902660 M49-3 335455 4902660 M50-1 335660 4903247 M50-2 335660 4903248 M50-3 335660 4903248 M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335499 4902650 M53-3 335496 4902649 M54-1 335347 4902623 M54-2 335347 4902623 M54-3 335347 4902622 M54-3 335347 4902622 M54-3 335347 4902620 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 <t< td=""><td>M48-3</td><td>334839</td><td>4902565</td></t<>	M48-3	334839	4902565
M49-3 335455 4902660 M50-1 335660 4903247 M50-2 335660 4903248 M50-3 335660 4903248 M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902649 M54-2 335347 4902622 M54-3 335347 4902622 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903149 M55-4 <t< td=""><td>M49-1</td><td>335454</td><td>4902658</td></t<>	M49-1	335454	4902658
M50-1 335660 4903247 M50-2 335660 4903248 M50-3 335660 4903248 M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903148 M55-5 <t< td=""><td>M49-2</td><td>335455</td><td>4902660</td></t<>	M49-2	335455	4902660
M50-2 335660 4903248 M50-3 335660 4903248 M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M51-3 335748 4902939 M52-1 335748 4902940 M52-3 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335347 4902622 M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334962 4903148 M56-1 335066 4902508 M56-2 <t< td=""><td>M49-3</td><td>335455</td><td>4902660</td></t<>	M49-3	335455	4902660
M50-3 335660 4903248 M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902620 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903149 M55-3 334962 4903149 M55-4 334963 4903149 M56-1 335066 4902508 M56-1 <t< td=""><td>M50-1</td><td>335660</td><td></td></t<>	M50-1	335660	
M51-1 335714 4903073 M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M52-1 335501 4902651 M53-1 335501 4902650 M53-2 335498 4902650 M53-3 335496 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335418 4902623 M58-1 334760 4902812 M58-3 <t< td=""><td>M50-2</td><td>335660</td><td>4903248</td></t<>	M50-2	335660	4903248
M51-2 335714 4903075 M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 3353496 4902649 M54-1 335346 4902623 M54-2 335347 4902620 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903149 M55-4 334962 4903148 M55-1 335066 4902508 M56-1 335066 4902508 M56-2 335065 4902508 M58-1 334760 4902816 M58-3 <	M50-3	335660	4903248
M51-3 335714 4903075 M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902620 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903149 M55-4 334963 4903148 M55-1 335066 4902508 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 490281 M58-3 334760 490281 M58-3 334760 490281 M59-1 334	M51-1	335714	4903073
M52-1 335748 4902939 M52-2 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902620 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903148 M55-1 334962 4903148 M55-2 334963 4903148 M55-3 334963 4903146 M56-1 335066 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902812 M58-4	M51-2	335714	4903075
M52-2 335748 4902940 M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335496 4902649 M53-4 335496 4902623 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902508 M58-1 334760 4902816 M58-3 334760 4902816 M58-3 334761 4902812 M58-4 334761 4902812 M59-3 334609 4903287 M59-3 334609 4903287 M59-3 <t< td=""><td>M51-3</td><td>335714</td><td>4903075</td></t<>	M51-3	335714	4903075
M52-3 335748 4902940 M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902816 M58-3 334761 490281 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 3	M52-1	335748	4902939
M53-1 335501 4902651 M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-4 335066 4902508 M56-1 335066 4902508 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902812 M58-3 334761 4902812 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-3 334604 4903287 M59-3 334604 4903287 M59-4 334604 4903287 </td <td>M52-2</td> <td>335748</td> <td>4902940</td>	M52-2	335748	4902940
M53-2 335499 4902650 M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902620 M54-3 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902812 M58-3 334761 4902812 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-3 334604 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-1 335047 4903494 M60-4 335077 4903494 </td <td>M52-3</td> <td>335748</td> <td>4902940</td>	M52-3	335748	4902940
M53-3 335498 4902650 M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M59-1 334609 4903287 M59-3 334606 4903287 M59-3 334604 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749 </td <td>M53-1</td> <td>335501</td> <td>4902651</td>	M53-1	335501	4902651
M53-4 335496 4902649 M54-1 335346 4902623 M54-2 335347 4902622 M54-3 335348 4902618 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-1 335066 4902508 M56-1 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902812 M58-3 334761 4902812 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-1 335044 4903494 M60-4 335077 4903494 M60-4 335077 4903494 M61-1 334456 4903749 </td <td>M53-2</td> <td>335499</td> <td>4902650</td>	M53-2	335499	4902650
M54-1 335346 4902623 M54-2 335347 4902620 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-3 334606 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-1 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749	M53-3	335498	4902650
M54-2 335347 4902622 M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-4 334963 4903146 M55-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749	M53-4	335496	4902649
M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749	M54-1	335346	4902623
M54-3 335347 4902620 M54-4 335348 4902618 M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749	M54-2	335347	4902622
M55-1 334961 4903151 M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-1 335049 4903494 M60-4 335077 4903494 M61-1 334456 4903749		335347	4902620
M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902812 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749	M54-4	335348	4902618
M55-2 334962 4903149 M55-3 334962 4903148 M55-4 334963 4903146 M55-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749			
M55-3 334962 4903148 M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749	M55-2	334962	
M55-4 334963 4903146 M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334456 4903749			
M56-1 335066 4902508 M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M55-4	334963	
M56-2 335065 4902545 M57 335418 4902623 M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749		335066	4902508
M58-1 334760 4902816 M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M56-2	335065	
M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M57	335418	4902623
M58-2 334760 4902814 M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M58-1		
M58-3 334761 4902812 M58-4 334761 4902811 M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M58-2	334760	
M59-1 334609 4903287 M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M58-3	334761	4902812
M59-2 334607 4903287 M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M58-4	334761	4902811
M59-3 334606 4903287 M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M59-1	334609	4903287
M59-4 334604 4903287 M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M59-2	334607	4903287
M60-1 335044 4903538 M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M59-3	334606	4903287
M60-3 335079 4903494 M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M59-4	334604	4903287
M60-4 335077 4903494 M61-1 334457 4903750 M61-2 334456 4903749	M60-1	335044	4903538
M61-1 334457 4903750 M61-2 334456 4903749	M60-3	335079	4903494
M61-2 334456 4903749	M60-4	335077	4903494
	M61-1	334457	4903750
M61-3 334455 4903748	M61-2	334456	4903749
	M61-3		4903748
M61-4 334454 4903747		334454	
M62-1 335166 4904438			
M62-2 335168 4904441			
M62-3 335166 4904441			
M62-4 335165 4904440			
M63-1 335424 4902393			
M63-2 335425 4902394			4902394
M64-1 335585 4902174			4902174
M64-2 335585 4902176			
M65-1 335297 4903314			
M65-2 335298 4903316			4903316

	Coordinates (UT	M NAD83 Zone 18)
Monitoring Well	Easting	Northing
M66-1	335154	4903218
M66-2	335155	4903219
M67-1	334799	4903089
M67-2	334799	4903090
M68-1	335670	4903504
M68-2	335671	4903502
M68-3	335671	4903500
M68-4	335672	4903499
M69-1	335062	4904299
M69-2	335063	4904298
M69-3	335063	4904296
M69-4	335064	4904295
M70-1	335890	4902862
M70-2	335891	4902860
M70-3	335891	4902858
M71	335390	4902773
M72	334981	4902831
M73	334931	4902891
M74	334950	4902962
M75	335151	4903215
M76	335675	4903217
M77	335685	4903188
M78	335391	4902776
M79	335673	4903215
M80-1	335207	4902532
M80-2	335206	4902534
M81	335275	4902654
M82-1	334640	4903060
M82-2	334641	4903058
M83	335169	4903156
M84	334702	4903072
M85	334999	4903208
M86	335077	4903195
M87-1	334959	4902493
M87-2	334965	4902495
M88-1	334883	4902497
M88-2	334885	4902499
M89-1	334815	4902673
M89-2	334818	4902674
M90-1	334520	4903845
M90-2	334522	4903843
M91-1	334798	4902729
M91-2	334792	4902734
M93	335006	4903908
M94-1	335497	4903519
M94-2	335486	4903526
M95-1	334743	4902908
M95-2	334740	4902917
M96	335774	4903158
M97	335059	4902551
M98	334976	4902730
M99-1	334869	4902646
M99-2	334869	4902646
14177-2	JJ700J	7702070

	Coordinates (UT)	M NAD83 Zone 18)
Monitoring Well	Easting	Northing
M100	334994	4902965
M101	334949	4903015
M102	334836	4902919
M103	335021	4903101
M104	335150	4903152
M105	335620	4902778
M106	335331	4902549
M107	335650	4902654
M108	335791	4902733
M109-1	335405	4902844
M109-2	335407	4902840
M110-1	335543	4902883
M110-2	335546	4902884
M111-1	335250	4902774
M111-2	335254	4902774
M112-1	335274	4902692
M112-2	335277	4902693
M113-1	335123	4902751
M113-2	335119	4902750
M114-1	335437	4902530
M114-2	335439	4902528
M115-1	335489	4902561
M115-2	335490	4902558
M116	335480	4902494
M117	335586	4902525
M121	335529	4902337
M122	335742	4902433
M123	335905	4902479
M125	335561	4902368
M166	336069	4902589
M167	336266	4902624
M168	336063	4902714
M170	335889	4902865
M171	335759	4903206
M172	335490	4902593
M173	335661	4901812
M174	335961	4901879
M176	336613	4902308
M177	335784	4902084
M178-1	336032	4902203
M178-2	336032	4902206
M178-3	336035	4902209
M178R-1	336008	4902236
M178R-2	336008	4902233
M178R-3	336005	4902233
M178R-4	336002	4902232
M178R-5	335997	4902232
M179	336338	4902357
M180	336801	4902677
M181-1	335912	4901492
M181-2	335912	4901492
M182	336402	4901643
M183	336953	4901770

Appendix A: Monitoring Well Inventory

	Coordinates (UT	M NAD83 Zone 18)
Monitoring Well	Easting	Northing
M184	336176	4901998
M185-1	336170	4902151
M185-2	336170	4902151
M186	336509	4902627
M187	335607	4901972
M188-1	335979	4902069
M188-2	335978	4902068
M189	335479	4902099
M190	336274	4902275
M191	336332	4902802
M192	335976	4902826
M193	336082	4902896
M194-1	335564	4901886
M194-2	335568	4901889
M195	335592	4902084
M199	335717	4902027
M200	335793	4902059
M201	335829	4901991
M202	335932	4902013
M203	335709	4902128
M204	335910	4902186
M205	336077	4902128
M206	335938	4902329
M207	336131	4902261
M217	335158	4903386
M218	335260	4903407
OW1	334995	4903200
OW4	335108	4903128
OW5	335113	4903134
OW36	334799	4903100
OW37-d	334630	4903063
OW37-s	334634	4903062
OW54-d	335406	4902785
OW54-i	335406	4902785
OW54-s	335406	4902785
OW55-d	335376	4903186
OW55-i	335376	4903186
OW55-s	335376	4903184
OW56-d	335106	4903131
OW56-i	335106	4903131
OW56-s	335106	4903129
OW57	335117	4902762
PW1	335465	4902639
PW2	334988	4903095
PW3	335620	4902778
PW4	335626	4902775
PW5	335066	4902547

APPENDIX B

Results from Analytical Quality Assurance / Quality Control (QA/QC) Program

Appendix B - QAQC Results (Summer 2023 Sampling Event) Summary of Results with Relative Percent Difference (RPD¹) greater than 20%

Location	Parameter	Unit	Regular Sample	Field Duplicate	RPD (%)	RDL ²	Comment
S18	Chemical Oxygen Demand	mg/L	36	49	30.59	4	
S18	Phosphorus (total)	mg/L	0.081	0.14	53.39	0.03	within 5x RDL

¹ RPD (%) = 100 * ABS (Regular Sample - Duplicate Sample) / ([Regular Sample + Duplicate Sample] / 2)

Parameter	Units	S18 Regular Sample	S18 Field Duplicate	RPD (%)
General/Inorganics		ı		
Alkalinity	mg/L	180	190	5.41
Ammonia	mg/L	< 0.15	< 0.15	0.00
Ammonia (unionized)	mg/L	< 0.00057	< 0.00057	0.00
Biochemical Oxygen Demand	mg/L	3	< 2	0.00
Chemical Oxygen Demand	mg/L	36	49	30.59
Chloride	mg/L	< 1	1.6	0.00
Conductivity	μS/cm	380	380	0.00
Hardness	mg/L	200	210	4.88
Nitrate	mg/L	< 0.1	< 0.1	0.00
Nitrite	mg/L	< 0.01	< 0.01	0.00
PhenoIs	mg/L	0.0015	0.0013	14.29
Phosphorus (total)	mg/L	0.081	0.14	53.39
Sulphate	mg/L	13	14	7.41
Total Dissolved Solids	mg/L	255	285	11.11
Total Suspended Solids	mg/L	< 10	12	0.00
Metals				
Boron	mg/L	< 0.02	< 0.02	0.00
Cadmium	mg/L	< 0.0001	0.0002	0.00
Calcium	mg/L	73	67	8.57
Chromium (III)	mg/L	< 0.005	< 0.005	0.00
Chromium (Total)	mg/L	< 0.005	< 0.005	0.00
Chromium (VI)	mg/L	< 0.0005	< 0.0005	0.00
Cobalt	mg/L	< 0.0005	< 0.0005	0.00
Copper	mg/L	< 0.002	< 0.002	0.00
Iron	mg/L	0.96	0.98	2.06
Lead	mg/L	< 0.0005	< 0.0005	0.00
Magnesium	mg/L	4.8	4.6	4.26
Nickel	mg/L	< 0.001	< 0.001	0.00
Potassium	mg/L	3.3	3.2	3.08
Sodium	mg/L	5.7	5.8	1.74
Zinc	mg/L	< 0.01	< 0.01	0.00
Naphthalene	mg/L	< 0.00005	< 0.00005	0.00
1,4-Dioxane	mg/L	< 0.001	< 0.001	0.00
Field Conductivity	μS/cm	292	292	0.00
Field Temperature	Celsius	25.8	25.8	0.00

² RDL = Laboratory Reportable Detection Limit

Appendix B - QAQC Results (Fall 2023 Sampling Event)

Summary of Results with Relative Percent Difference (RPD 1) greater than 20%

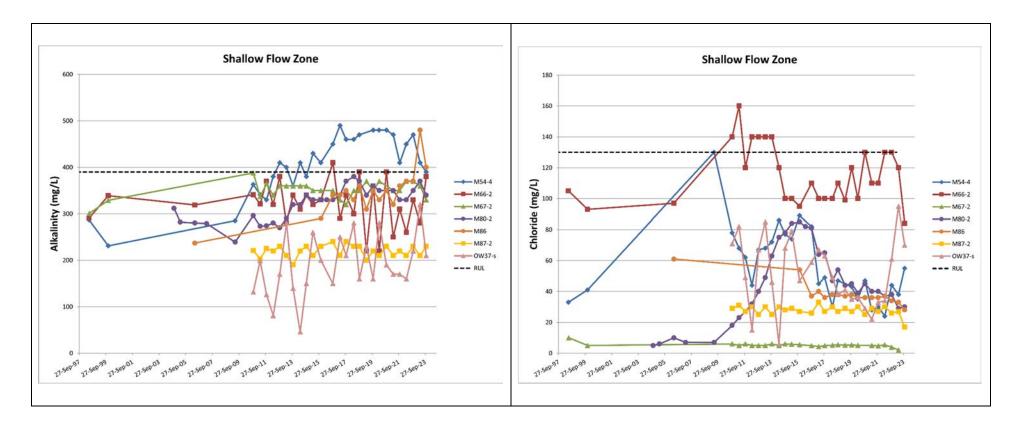
Location	Parameter	Unit	Regular Sample	Field Duplicate	RPD (%)	RDL ²	Comment
M108	Dissolved Organic Carbon	mg/L	5.4	8.3	42.34	0.4	
M123	Dissolved Organic Carbon	mg/L	5.4	4.1	27.37	0.4	

 $[\]frac{1}{2}$ RPD (%) = 100 * ABS (Regular Sample - Duplicate Sample) / ([Regular Sample + Duplicate Sample] / 2)

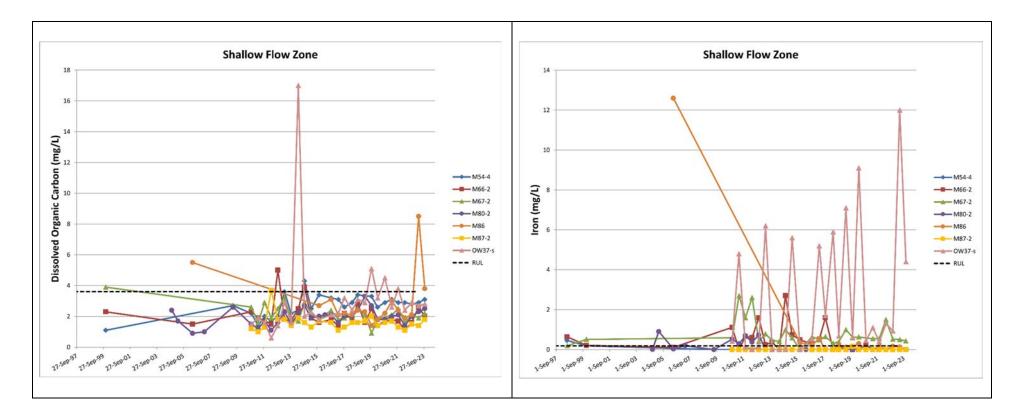
Reading Name	Units	M108 Regular Sample	M108 Field Duplicate	RPD (%)
General Inorganic Parameters	•	_		
Alkalinity	mg/L	430	440	2.30
Ammonia	mg/L	0.71	0.7	1.42
Chloride	mg/L	36	37	2.74
Conductivity	μS/cm	940	930	1.07
Dissolved Organic Carbon	mg/L	5.4	8.3	42.34
Nitrate	mg/L	< 0.1	< 0.1	0.00
Nitrite	mg/L	< 0.01	< 0.01	0.00
Sulphate	mg/L	11	11	0.00
Total Dissolved Solids	mg/L	515	495	3.96
Boron	mg/L	0.18	0.18	0.00
Calcium	mg/L	99	99	0.00
Iron	mg/L	3	3	0.00
Magnesium	mg/L	29	29	0.00
Manganese	mg/L	0.14	0.13	7.41
Potassium	mg/L	5.8	5.7	1.74
Sodium	mg/L	53	53	0.00
Volatile Organic Compounds		•		
1,1,1,2-Tetrachloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,1,1-Trichloroethane	mg/L	< 0.0001	< 0.0001	0.00
1,1,2,2-Tetrachloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,1,2-Trichloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,1-Dichloroethane	mg/L	0.00029	0.0003	3.39
1,1-Dichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
1,2-Dichlorobenzene (o)	mg/L	< 0.0002	< 0.0002	0.00
1,2-Dichloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,3,5-Trimethylbenzene	mg/L	< 0.0002	< 0.0002	0.00
1,3-Dichlorobenzene (m)	mg/L	< 0.0002	< 0.0002	0.00
1,4-Dichlorobenzene (p)	mg/L	< 0.0002	< 0.0002	0.00
1,4-Dioxane	mg/L	0.0087	0.009	3.39
Benzene	mg/L	< 0.0001	< 0.0001	0.00
Chlorobenzene	mg/L	< 0.0001	< 0.0001	0.00
Chloroethane	mg/L	0.0034	0.0034	0.00
Chloromethane	mg/L	< 0.0005	< 0.0005	0.00
Cis-1,2-Dichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Dichloromethane	mg/L	< 0.0005	< 0.0005	0.00
Ethylbenzene	mg/L	< 0.0001	< 0.0001	0.00
m+p-Xylene	mg/L	< 0.0001	< 0.0001	0.00
o-Xylene	mg/L	< 0.0001	< 0.0001	0.00
Styrene	mg/L	< 0.0002	< 0.0002	0.00
Tetrachloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Toluene	mg/L	< 0.0002	< 0.0002	0.00
Total Xylenes	mg/L	< 0.0001	< 0.0001	0.00
Trans-1,2-dichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Trichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Vinyl Chloride	mg/L	< 0.0002	< 0.0002	0.00

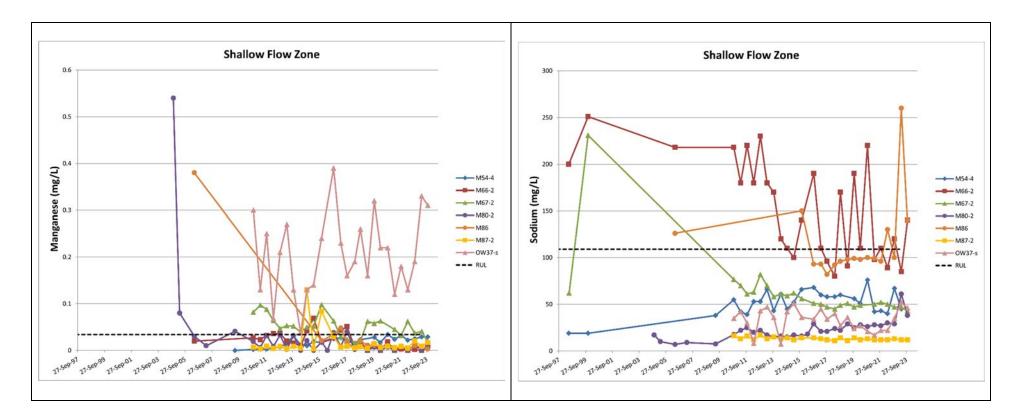
² RDL = Laboratory Reportable Detection Limit

Reading Name	Units	M109-1 Regular Sample	M109-1 Field Duplicate	RPD (%)
General/Inorganics	•	•		
Alkalinity	mg/L	580	580	0.00
Ammonia	mg/L	1.64	1.61	1.85
Chloride	mg/L	120	100	18.18
Conductivity	μS/cm	1400	1400	0.00
Dissolved Organic Carbon	mg/L	8.1	8	1.24
Nitrate	mg/L	< 0.1	< 0.1	0.00
Nitrite	mg/L	< 0.01	< 0.01	0.00
Sulphate	mg/L	1.9	< 1	0.00
Total Dissolved Solids	mg/L	795	735	7.84
Boron	mg/L	0.34	0.34	0.00
Calcium	mg/L	130	130	0.00
Iron	mg/L	11	11	0.00
Magnesium	mg/L	42	42	0.00
Manganese	mg/L	0.26	0.26	0.00
Potassium	mg/L	7	7.1	1.42
Sodium	mg/L	100	100	0.00
Volatile Organic Compounds	(VOCs)			
1,1,1,2-Tetrachloroethane	mg/L	< 0.001	< 0.001	0.00
1,1,1-Trichloroethane	mg/L	< 0.0005	< 0.0005	0.00
1,1,2,2-Tetrachloroethane	mg/L	< 0.001	< 0.001	0.00
1,1,2-Trichloroethane	mg/L	< 0.001	< 0.001	0.00
1,1-Dichloroethane	mg/L	< 0.0005	< 0.0005	0.00
1,1-Dichloroethylene	mg/L	< 0.0005	< 0.0005	0.00
1,2-Dichlorobenzene (o)	mg/L	< 0.001	< 0.001	0.00
1,2-Dichloroethane	mg/L	< 0.001	< 0.001	0.00
1,3,5-Trimethylbenzene	mg/L	< 0.001	< 0.001	0.00
1,3-Dichlorobenzene (m)	mg/L	< 0.001	< 0.001	0.00
1,4-Dichlorobenzene (p)	mg/L	< 0.001	< 0.001	0.00
1,4-Dioxane	mg/L	0.032	0.031	3.17
Benzene	mg/L	< 0.0005	< 0.0005	0.00
Chlorobenzene	mg/L	< 0.0005	< 0.0005	0.00
Chloroethane	mg/L	0.0087	0.0085	2.33
Chloromethane	mg/L	< 0.0025	< 0.0025	0.00
Cis-1,2-Dichloroethylene	mg/L	< 0.0005	< 0.0005	0.00
Dichloromethane	mg/L	< 0.0025	< 0.0025	0.00
Ethylbenzene	mg/L	< 0.0005	< 0.0005	0.00
m+p-Xylene	mg/L	< 0.0005	< 0.0005	0.00
o-Xylene	mg/L	< 0.0005	< 0.0005	0.00
Styrene	mg/L	< 0.001	< 0.001	0.00
Tetrachloroethylene	mg/L	< 0.0005	< 0.0005	0.00
Toluene	mg/L	< 0.001	< 0.001	0.00
Total Xylenes	mg/L	< 0.0005	< 0.0005	0.00
Trans-1,2-dichloroethylene	mg/L	< 0.0005	< 0.0005	0.00
Trichloroethylene	mg/L	< 0.0005	< 0.0005	0.00
Vinyl Chloride	mg/L	< 0.001	< 0.001	0.00

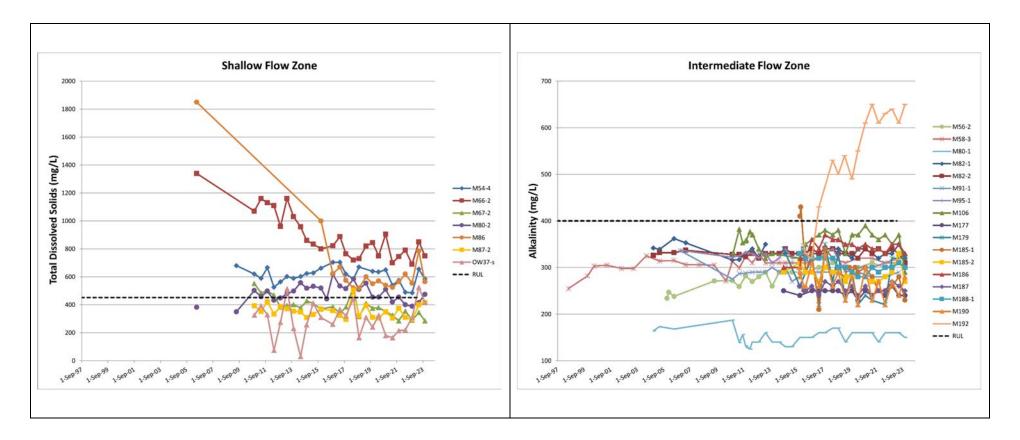

Reading Name	Units	M123 Regular Sample	M123 Field Duplicate	RPD (%)
General/Inorganics	•	•	•	
Alkalinity	mg/L	360	350	2.82
Ammonia	mg/L	0.24	0.23	4.26
Chloride	mg/L	23	23	0.00
Conductivity	μS/cm	770	760	1.31
Dissolved Organic Carbon	mg/L	5.4	4.1	27.37
Nitrate	mg/L	< 0.1	< 0.1	0.00
Nitrite	mg/L	< 0.01	< 0.01	0.00
Sulphate	mg/L	12	12	0.00
Total Dissolved Solids	mg/L	350	365	4.20
Boron	mg/L	0.13	0.13	0.00
Calcium	mg/L	92	96	4.26
Iron	mg/L	< 0.1	< 0.1	0.00
Magnesium	mg/L	20	20	0.00
Manganese	mg/L	0.021	0.022	4.65
Potassium	mg/L	3.7	3.9	5.26
Sodium	mg/L	39	40	2.53
Volatile Organic Compounds	(VOCs)			
1,1,1,2-Tetrachloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,1,1-Trichloroethane	mg/L	< 0.0001	< 0.0001	0.00
1,1,2,2-Tetrachloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,1,2-Trichloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,1-Dichloroethane	mg/L	0.00024	0.00022	8.70
1,1-Dichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
1,2-Dichlorobenzene (o)	mg/L	< 0.0002	< 0.0002	0.00
1,2-Dichloroethane	mg/L	< 0.0002	< 0.0002	0.00
1,3,5-Trimethylbenzene	mg/L	< 0.0002	< 0.0002	0.00
1,3-Dichlorobenzene (m)	mg/L	< 0.0002	< 0.0002	0.00
1,4-Dichlorobenzene (p)	mg/L	< 0.0002	< 0.0002	0.00
1,4-Dioxane	mg/L	0.0044	0.0044	0.00
Benzene	mg/L	< 0.0001	< 0.0001	0.00
Chlorobenzene	mg/L	< 0.0001	< 0.0001	0.00
Chloroethane	mg/L	0.0032	0.0035	8.96
Chloromethane	mg/L	< 0.0005	< 0.0005	0.00
Cis-1,2-Dichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Dichloromethane	mg/L	< 0.0005	< 0.0005	0.00
Ethylbenzene	mg/L	< 0.0001	< 0.0001	0.00
m+p-Xylene	mg/L	< 0.0001	< 0.0001	0.00
o-Xylene	mg/L	< 0.0001	< 0.0001	0.00
Styrene	mg/L	< 0.0002	< 0.0002	0.00
Tetrachloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Toluene	mg/L	< 0.0002	< 0.0002	0.00
Total Xylenes	mg/L	< 0.0001	< 0.0001	0.00
Trans-1,2-dichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Trichloroethylene	mg/L	< 0.0001	< 0.0001	0.00
Vinyl Chloride	mg/L	< 0.0002	< 0.0002	0.00

APPENDIX C

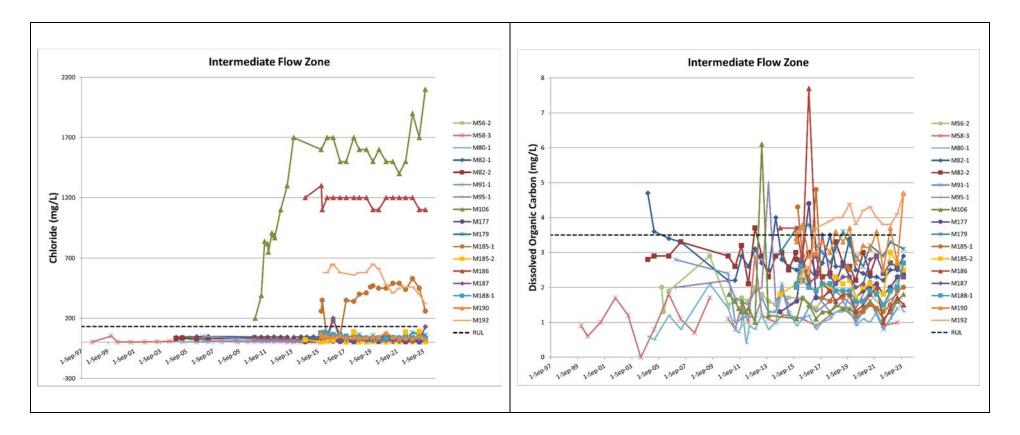

Time-Concentration Plots from Groundwater Trigger Wells



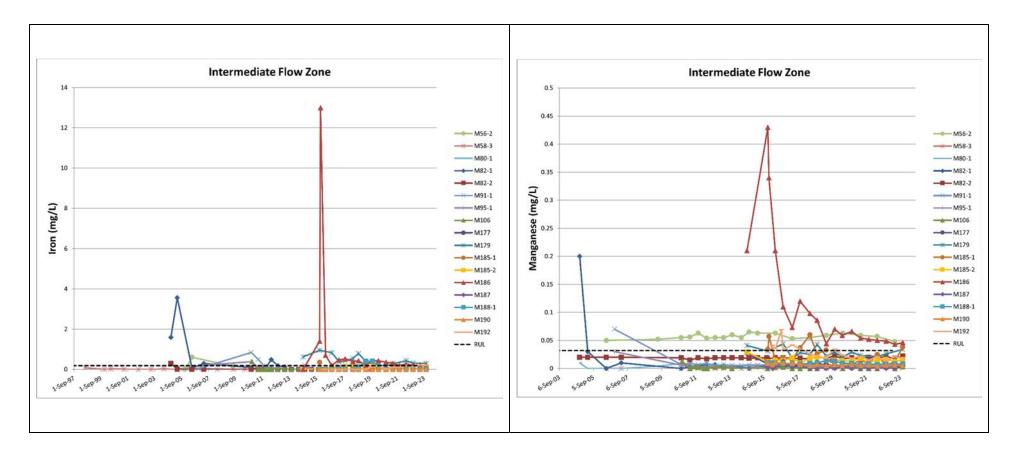
Page 1 of 7 BluMetric



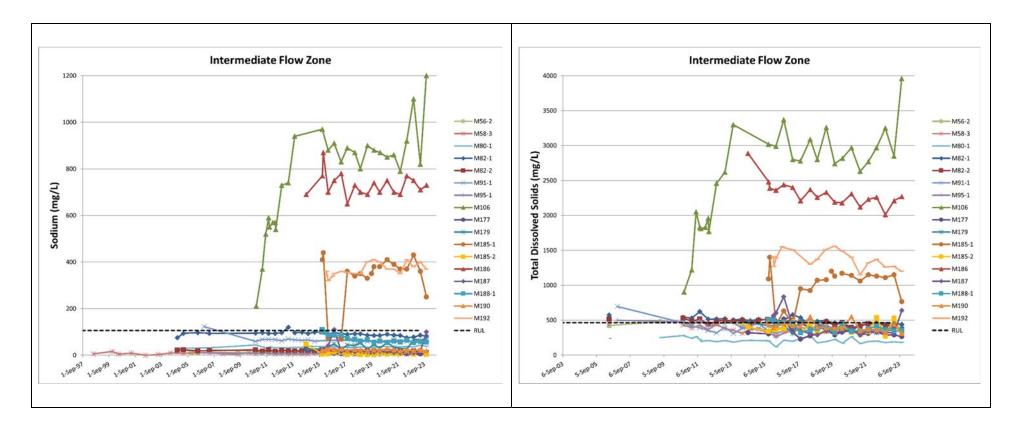
Page 2 of 7 BluMetric



Page 3 of 7 BluMetric



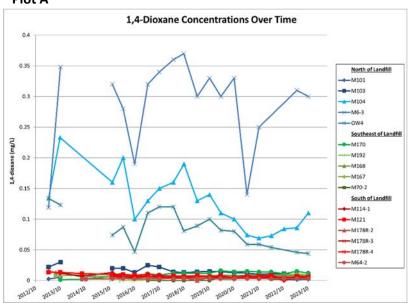
Page 4 of 7 BluMetric



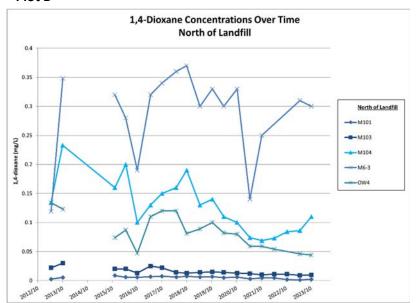
Page 5 of 7 BluMetric

Page 6 of 7 BluMetric

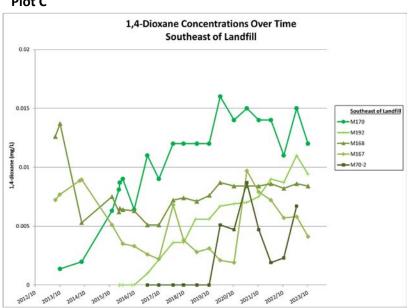
Page 7 of 7 BluMetric

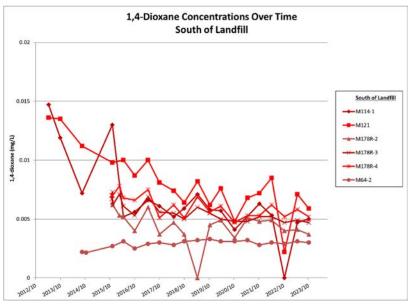

APPENDIX D

Time-Concentration Plots for 1,4-Dioxane at Selected Wells



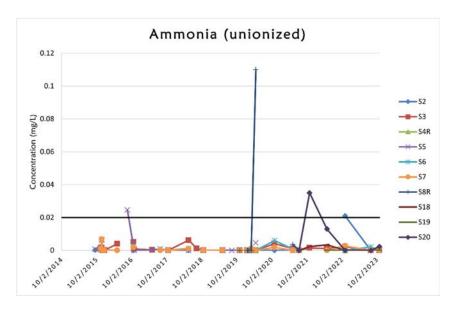
Appendix D - 1,4-Dioxane at Selected Wells Time-Concentration Plots

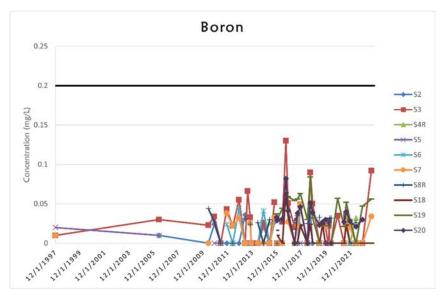

Plot A

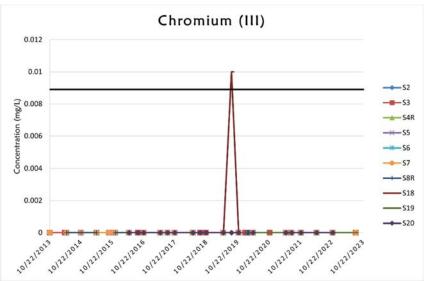

Plot B

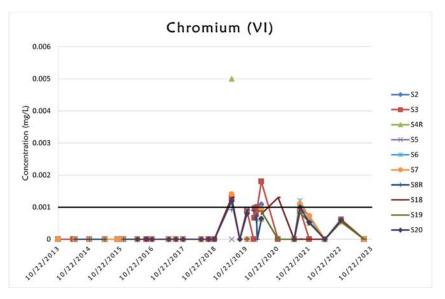
Plot C

Plot D

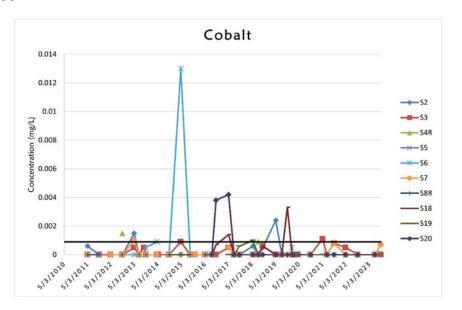

Page 1 of 1 BluMetric

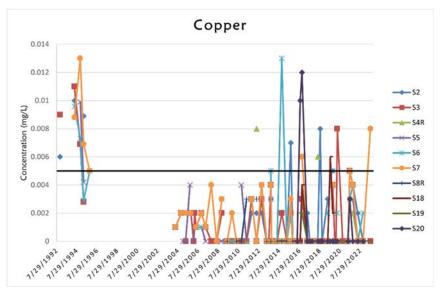

APPENDIX E

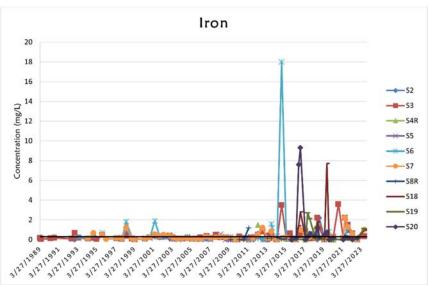

Time-Concentration Plots from Surface Water Sampling Locations

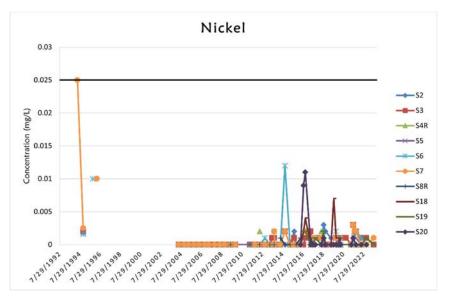


Appendix E – Historical Surface Water Time-Concentration Plots

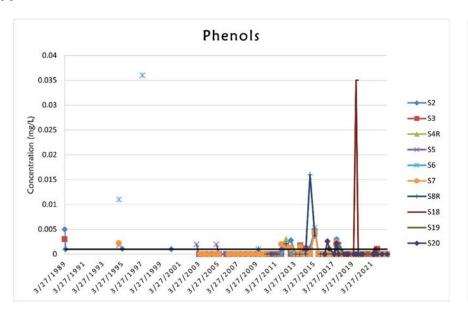


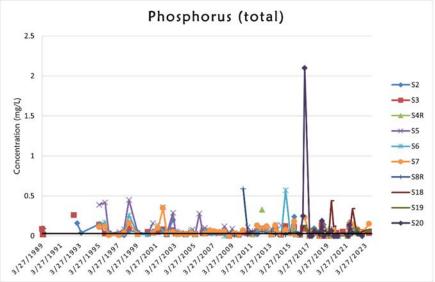


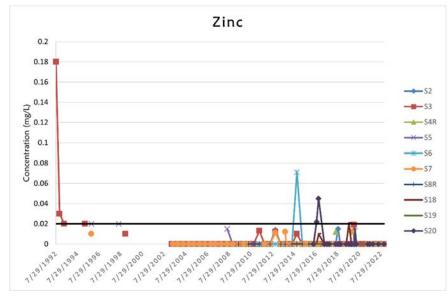



Page 1 of 3 BluMetric

Appendix E – Historical Surface Water Time-Concentration Plots







Page 2 of 3 BluMetric

Appendix E – Historical Surface Water Time-Concentration Plots

Page 3 of 3 BluMetric

BluMetric Environmental Inc.

1682 Woodward Drive Ottawa, Ontario Canada K2C 3R8 Tel: 877.487.8436 Fax: 877.487.8436 Ottawa@blumetric.ca 4 Cataraqui Street The Tower, The Woolen Mill Kingston, Ontario Canada K7K 127 Tel: 877.487.8436 Kingston@blumetric.ca 3B, 209 Frederick Street Kitchener, Ontario Canada N2H 2M7 Tel: 877.487.8436 Kitchener@blumetric.ca 825 Milner Avenue Toronto, Ontario Canada M1B 3C3 Tel: 877.487.8436 Toronto@blumetric.ca 6-410 Falconbridge Sudbury, Ontario Canada P3A 454 Tel: 877.487.8436 Sudbury@blumetric.ca

260-15 Taschereau Street Gatineau, Quebec Canada J8Y 2V6 Tel: 877.487.8436 Gatineau@blumetric.ca

200-1500 Du College Street Saint-Laurent, Quebec Canada H4L 5G6 Tel: 877.487.8436 Montreal@blumetric.ca 4916 – 49th Street Yellowknife, NT Canada X1A 1P3 Tel: 877.487.8436 Yellowknife@blumetric.ca Whitehorse, Yukon Canada Y1A 2J8 Tel: 877.487.8436 Whitehorse@blumetric.ca